
Improving Bug Localization by Mining Crash
Reports: An Industrial Study

Marcos Medeiros∗, Uirá Kulesza∗, Rodrigo Bonifacio†, Eiji Adachi∗, Roberta Coelho∗
∗Federal University of Rio Grande do Norte (Natal, Brazil)

Email: marcosamm@gmail.com, uira@dimap.ufrn.br, eijiadachi@imd.ufrn.br, roberta@dimap.ufrn.br
†University of Brası́lia (Brası́lia, Brazil)

Email: rbonifacio@unb.br

Abstract—The information available in crash reports has been
used to understand the root cause of bugs and improve the
overall quality of systems. Nonetheless, crash reports often lead
to a huge amount of information, being necessary to consolidate
the crash report data into groups, according to a set of well-
defined criteria. Recent research work have proposed different
criteria and techniques to group crash report data, making more
effective the process of finding the root causes of a bug and
showing the performance of the approaches in the context of
open source applications (such as IDEs and web browsers). In
spite of that, it is still not clear how these approaches perform
in other application domains, such as enterprise systems. In this
paper, we present an industrial study in this field. We tailor
existing approaches to find and group correlated crash reports,
and identify buggy files in the domain of web-based systems.
We then evaluate the performance of the resulting criteria and
technique in industrial settings – identifying and ranking the
classes that are more likely to contribute to a crash and thus
might need a fix. We also check if the methods changed by
the developers to fix a bug are present in the stack traces of
the crash report groups used to identify the buggy classes. Our
study provides new pieces of evidence of the potential use of crash
report groups to indicate buggy classes and methods using stack
traces information. For instance, we successfully identify buggy
classes with recall varying from 61.4% to 77.3%, considering the
top 1, top 3, top 5, and top 10 suspicious buggy files identified
and ranked by our approach. We also found that 80% of changed
methods from the closed bug fix issues appeared in related
stack traces of the crash report groups. Finally, the approach
also received positive response from the project leaders of the
evaluated projects to help their bug resolution processes.

Index Terms—Software crash, Bug Correlation, Bug localiza-
tion, Crash reports, Stack traces

I. INTRODUCTION

Software developers can leverage crash reports as a mecha-
nism to build a general comprehension about possible root
causes of bugs and then to improve software quality by
fixing them [1]–[3]. Indeed, developers might collect such
an information using built-in automatic crash reporting tools
or log-based tools that monitor the execution of software
systems. Each crash report usually maintains a set of runtime
information, such as the user requested functionality, execution
date/time, and an associated stack trace. A stack trace is an
ordered set of frames where each frame refers to a method
signature. Developers often use the information available in
crash reports to identify and correct existing bugs [4], [5].

Despite the benefits of using crash reports to automatically
identify bugs and help with bug fixing tasks, crash reporting
and logging tools usually need to deal with a large volume of
crash reports [1], [6]. To mitigate this problem, crash reports
can be grouped based on the similarity of their associated stack
traces. The stack traces of grouped crash reports can then be
used by developers to facilitate bug identification and fixing.
Accordingly, over the last years, many research works have
explored the use of stack traces to aggregate crash reports [7]–
[12]; as well as to locate and correct bugs [5], [13]–[20].

For instance, Dhaliwal et al. [21] proposed a new way of
automatically grouping crash reports of the Firefox browser—
based on the Levenshtein’s distance similarity algorithm of
the stack traces. Their approach leads to a reduction of
5% in the time that is necessary to correct faults. Wang
et al. [11], [12] proposed five rules to automatically group
correlated crash reports. They conducted an empirical study
with data from Firefox and Eclipse. Their approach identified
correlated crash reports with a precision of 91% (Firefox)
and 76% (Eclipse). The authors of the mentioned work also
developed a methodology to identify buggy files, based on the
dimensions collected for each file present in the stack traces.
Similarly, Wu et al. [19] also studied the identification of faulty
code using groups of crash reports. They proposed a method
called CrashLocator to locate defective functions related to
groups of crash reports—previously merged using stack trace
information. They have developed approaches to expand the
stack traces using static analysis, and discriminative factors
to rank suspicious functions. They located 50.6%, 63.7%, and
67.5% of failures by examining the top 1, top 5, and top 10
functions recommended by CrashLocator, respectively.

In this paper, we report our experience on tailoring and
applying an existing approach for grouping crash reports
and finding buggy code in a different application domain:
large scale proprietary web-based systems. We first tailored,
improved, and implemented existing techniques to locate and
rank buggy files using groups of crash reports [12], [19]. We
then conducted an industrial study to answer two research
questions: (RQ1) What is the performance of our stack-trace
approach to identify buggy code files in Java web-based
systems? and (RQ2) To what extent do methods from the closed
bug fix issues appear in the stack traces of the associated crash
report group?

Regarding the first research question—involving a coarse-
grained (files) perspective, after analyzing the top 1, top 3,
top 5, and top 10 suspicious files suggested by our approach,
and applying one previously proposed stack traces grouping
rule (Crash Type Signature), we obtained, respectively, average
recall of 61.4%, 77.3%, 77.3%, and 77.3%, while the mean
average precision were 41.4%, 55.4%, 55.5%, and 55.5%.
With respect to the second research question—involving a fine-
grained (methods) perspective, we found that 80% of changed
methods from the closed bug fix issues appeared in related
stack traces of the crash report groups.

Our findings support and generalize previous results to a
new application domain. We give evidence about the efficiency
of using groups of crash reports to correctly indicate buggy
files and methods present in stack traces. As part of this work,
we have presented the results of this industrial study to the
project leaders of the investigated systems, and the decision
is to use our approach in their software development process.
Currently, the development teams of the partner company are
using our list of suspicious buggy files and methods to correct
bugs related to the stack trace groupings.

II. APPROACH

We customized and implemented an approach based on
previous work [12], [19]: (a) to group crash reports related
to the same software bug; and (b) to rank files suspected of
causing crashes. The main goal is to facilitate the resolution of
bugs. The crash reports are clustered by stack traces according
to specific rules (see details in Section II-A). Also, a list of
suspicious buggy files is generated based on the stack traces
of the grouped crash reports (see details in Section II-B).

A. Crash Report Grouping

In the first step of our approach, we group crash reports
using information available in the stack traces. The primary
purpose is to aggregate strongly correlated crash reports and
to reduce the time necessary for data processing. We process
and group the crash reports in five ordered and cumulative
levels, considering the characteristics of their associated stack
traces, as shown in Fig. 1.

Identical Stack Trace. Initially, we group crash reports
whose stack traces are identical (STA = STB). The signature
that represents each group is the stack trace itself. In addition
to the signature, we save the ids of each crash report belonging
to the group and the dates of the oldest and most recent log
occurrence.

Equivalent Signature. Nonetheless, after grouping identi-
cal stack traces, we realized distinct groups whose signatures
were almost identical. They differ only in the identifica-
tion number of the proxy, automatically generated accessor
method, among others. Consider two stack traces STA and
STB, where

• at ...GeneratedMethodAccessor10184.invoke() ∈ STA
• at ...GeneratedMethodAccessor10272.invoke() ∈ STB

That is, these lines of the stack traces only differ with
respect to the numbers 10184 and 10272. For these

Frequent closed ordered sub-Set

Top Frame File

Crash Type Signature

Equivalent Signature

Identical Stack Trace

Crash Report
Repository

FCSFs	A	⋂	FCSFs	B	≠	∅

TfFileA	=	TfFileB

STA ⊆ STB or
STB ⊆ STA

$Proxy[0-9]* -->
$Proxy000, ...

STA = STB

Fig. 1. Crash report grouping levels by stack traces

small differences, we also consider two stack traces (e.g.,
STA and STB) equivalent, and we group their crash re-
ports. We use regular expressions (such as $Proxy[0-9]*,
GeneratedMethodAccessor[0-9]*, $$EnhancerByCGLIB$$[0-
9,az,A-Z]*, and $$FastClassByCGLIB$$[0-9,a-z,A-Z]*) to re-
place these numbers with 000 (e.g., leading to at ...Gener-
atedMethodAccessor000.invoke() in the examples above). We
also aggregate groups with equivalent signatures into a “super-
group” whose signature represents the two stack traces.

After that, we created the other three levels of grouping
based on rules proposed by Wang et al. [12], always joining
previously created groups. We have only used three rules out
of 5 rules detailed in the previous work [12]) because, in the
original work, the authors concluded that using only these first
three specific rules together outperforms other configurations
using the remaining rules. We detail the rules we use in our
approach in what follows.

Rule 1 (Crash Type Signature) identifies similarities among
correlated fault types when comparing strings of two crash
types, and groups two stack traces STA and STB when one
contains the other (STA ⊆ STB or STB ⊆ STA). To apply this
rule, we only consider the rows of a stack trace with packages,
classes, and methods (e.g., at java.lang.reflect.Method.invoke
(Method.java:606)), since the rest might differ because of the
idiom, for example. We also ignore the line number present
in the stack trace, because simple file formatting, blank line
insertion, or comment inclusion can change the line number
without modifying any code statement. In other words, we did
not make a simple comparison of strings to check if one stack
trace contains the other.

Rule 2 (Top Frame File) correlates two fault types when
they have the same qualified file name in the most inner frame
of the call stack (exception signaler), that is, at the top of the
stack. Consider two stacktraces STA and STB, where:

• at s.p.ClassMBean.methodA(ClassMBean.java:280) is

the signaler of STA
• at s.p.ClassMBean.methodB(ClassMBean.java:251) is

the signaler of STB
In both cases, the qualified file name is the same
(s.p.ClassMBean). Rule 2 groups this kind of similar stack
traces.

Rule 3 (Frequent Closed Ordered Sub-Set) takes into
account whether two groups of crash reports have at least one
common frequent closed ordered sub-sets of frames (FCSF),
which is a type of frequent closed sequence [22], [23]. The
idea of this rule is to correlate fault types whose majority of
error stack traces have at least a subset of frequently called
frames in the same order. For the resulting groups after the
application of rule 2, we extracted the frequent closed ordered
subsets of frames (FCSFs) using the Sparesort [24] imple-
mentation of the BIDE algorithm [22]. BIDE (BI-Directional
Extension) is a general purpose and efficient algorithm for
mining frequent closed sequences (in our case, sequences of
stacktrace frames). We configure the BIDE parameters and
thresholds using the same settings of a previous work [22].

B. Ranking suspicious files and methods

After grouping the crash reports using the procedures de-
tailed in Section II-A, we mine information of the files present
in the stack traces of the crash report groups. We use this
information to rank the files that are more likely to produce the
crashes in a given crash report group. To this end, our approach
leverages three discriminative factors proposed by Wu et al.
[19], though adapted to a coarse-grained level (files, instead
of methods): Inverse Average Distance to Crash Point, Inverse
Bucket Frequency, and File Frequency. In what follows, we
detail these factors.

Inverse Average Distance to Crash Point (IAD): If a file
appears closer to the crash point, it is more likely to cause
the crash. The IAD factor measures how close a file is to the
crash point:

IAD(f,B) =
1

1 +
∑n

j=1 DCPJ(f)/n
(1)

where n is the number of crash reports of group B and
DCPj(f) is the shortest distance between the file f and the
crash point in the stack trace of the jth crash report of group
B.

Inverse Bucket Frequency (IBF): If a file appears in stack
traces caused by many different faults, it is less likely to be
the cause of a specific fault. The IBF factor measures the
discriminative power of a file concerning all groups of crash
reports:

IBF (f) = log(
#B

#Bf
+ 1) (2)

where #B is the total number of groups, and #Bf is the
number of groups whose stack traces contain the file f .

File Frequency (FF): If a file often appears in stack traces
caused by a particular fault, then it is likely to be the cause

of this fault. The FF factor measures the frequency that a file
appears in stack traces of a group of crash reports:

FF (f,B) =
Nf,B

NB
(3)

where Nf,B is the number of stack traces of group B that
the file f appears. NB is the total number of stack traces in
group B.

The ranking of the suspicious files is accomplished using a
combination of the three factors, generating a score for each
file f present in the stack traces of group B:

Score(f) = IAD(f,B) ∗ IBF (f) ∗ FF (f,B) (4)

This method assigns higher scores to files that appear more
often in stack traces in a group, less frequently in stack
traces in other groups, and closer to the crash point. The rank
of suspected files containing crashes that triggered the crash
report group is generated by calculating the score of each file
in the stack traces and sorting them in descending order.

Suggesting suspicious methods. Although we use an algo-
rithm to rank the files, regarding methods we follow a different
strategy. For each of the ranked files, we identified the methods
that appeared in the stack traces of the respective group of
crash reports and suggest them to the developers, showing the
most frequent ones first. This decision was motivated by the
lack of access to the source code repository during the initial
stage of the study. Nonetheless, we show that, even without
access to source code repositories, its is possible to identify
both suspicious files and methods using stack traces only.

III. STUDY SETTINGS

The goal of this study is to investigate whether and to
what extent information contained in crash reports can help
developers locating bugs in enterprise web-based systems.
Next, we present the details about the design of our industrial
study. We first detail the research questions related to our
investigation. Then, we present the characteristics of the ana-
lyzed projects/systems. Finally, we discuss our data collection
and analysis procedures.

A. Research Questions

The following research questions are addressed in our study:
(RQ1) What is the performance of our stack-trace approach

to identify buggy code files in Java web-based systems? - This
research question investigates if our crash report grouping
based approach can contribute to identify code/class files
responsible for system crashes more efficiently. In particular,
our study focuses on large scale industrial web-based systems
to analyze whether previous results are also maintained for
this domain.

(RQ2) To what extent do methods from the closed bug
fix issues appear in the stack traces of the associated crash
report group? - In this research question, we investigate if the
methods that were modified to fix bugs during the maintenance
of the systems also appear in the list of methods suggested by
our approach. The suggested methods of our approach are the

most frequent in the stack traces of the grouped crash reports
(Section II-B). This information might be useful to indicate
if the possible faulty methods suggested by our approach are
strongly related to the methods presented in the corrected bug
issues of the systems.

B. Target Systems

We selected three large scale web-based Java systems as the
target systems of our study. These systems were chosen for
this study for two main reasons. First, regarding relevance,
these are non-trivial systems in use for several years and
their development teams keep track of crash reports in a
database. They have also reported the difficulty to use the
large amount of crash reports during the tasks of bug fixing.
Second, regarding convenience, we have access to the crash
reports and issue tracker tools of the target systems.

These web-based systems are used and customized by more
than 50 government and academic institutions — supporting
many and different business processes. They are implemented
using mainstream Java enterprise technologies and frame-
works, such as Java Server Faces, Spring, and Hibernate. Table
I characterizes the target systems in terms of their size (i.e.,
number of classes and lines of code) and the average number
of user requests (coming from a browser or a mobile app)
per day in the main institution that use them. The company
responsible for the development of the systems has about
120 developers and uses modern agile methodologies (scrum,
kanban) and practices.

TABLE I
TARGET SYSTEMS CHARACTERIZATION

System Classes Lines of code Avg. No. of Daily Requests
SYS1 7,305 1,155,790 1,193,825
SYS2 6,842 1,313,942 121,934
SYS3 3,827 667,810 79,264
Total 17,974 3,137,542 1,395,023

C. Study Procedures

In order to build a general understanding about the feasibil-
ity of using the stack trace for bug localization in the context of
large scale web-based systems, we group crash reports, extract
bug fix issues with stack traces and fixed files, link crash report
groups with bug fix issues by stack traces, and, finally, we rank
suspicious files. To answer RQ1, we evaluate the performance
of the approach comparing the modified classes of resolved
bug fix issues that have associated stack traces against a list
of suspected buggy files that are present in the stack traces of
the correlated crash reports. To answer RQ2, we obtained with
the development team the fixed methods for each of the files
identified by the approach, and we checked if they appear on
the stack traces of the respective crash report group. Figure
2 shows an overview of the study procedure. Next we detail
each step in the figure.

Crash report grouping. (Fig 2, Step 1) This step aims to
group crash reports related to the same bug. In our study,
we collect crash reports for all the studied systems from

Suspicious
Files:
 1 FileA 57
 2 FileB 23
 3 FileC 10
 4 File D 5
 ...
 ...

HighLevelException:
MidLevelException:
LowLevelException
 at Junk.a(Junk.java:6)
 at Junk.main(Junk.java:3)
Caused by: MidLevelException:
LowLevelException
 at Junk.c(Junk.java:12)
 at Junk.b(Junk.java:9)
 at Junk.a(Junk.java:6)
 ... 1 more
Caused by: LowLevelException
 at Junk.e(Junk.java:18)
 at Junk.d(Junk.java:15)
 at Junk.c(Junk.java:12)
 ... 3 more

HighLevelException:
MidLevelException:
LowLevelException
 at Junk.a(Junk.java:6)
 at Junk.main(Junk.java:3)
Caused by: MidLevelException:
LowLevelException
 at Junk.c(Junk.java:12)
 at Junk.b(Junk.java:9)
 at Junk.a(Junk.java:6)
 ... 1 more
Caused by: LowLevelException
 at Junk.e(Junk.java:18)
 at Junk.d(Junk.java:15)
 at Junk.c(Junk.java:12)
 ... 3 more

Commited Files:
 * FileA
 * FileB
 ...

Linking issue with
crash report

group

Coarse-grained
level evaluation

Identified Files:
 * FileA
 * FileB
 ...

Stack tracesStack traces Lists of
commited files

Ranked list of
suspicious files

Lists of
identified filesFine-grained

level evaluation

Crash
repository

Issue
repository

RQ1

RQ2

Bug fix issue
extraction

Crash report
grouping

Ranking
suspicious

files

Git
repository

Development
team

Changed
Methods:
* FileA.methodM
* FileB.methodN
 ...
 ...

Lists of changed
methods

1

3

4

2

5

6

Fig. 2. Study overview

a ElasticSearch instance that stores all the web requests
with associated crash reports. Each crash report has a stack
trace and an associated URL. We use the ElasticSearch Rest
API to query the crash reports created between April and
December/2019. We then cluster the crash reports according
to the procedures detailed in Section II-A.

Bug Fix Issue Extraction. (Fig 2, Step 2) The purpose of
this step is to identify the bug fix issues, modified code files to
fix the bug, and stack traces that are used to link the issues with
crash report groups. In our study, we used a specific RedMine
plugin that keeps informations of the files that a bug fix has
changed. We used the Redmine/Chiliproject Java API1 project
to query the Redmine Rest API and find the issues created and
closed between April and December/2019, which are labeled
as “Errors” or “Known defect” and with the status “Closed”.
These two labels are used to distinguish issues that refer to
bugs from other kind of issues (new features, improvements,
documentation, among others). In summary, we looked for
resolved bug fix issues for each of the target systems.

We queried these issues, collecting those that had some
stack trace reported, and Git merge request information. We
performed these steps by removing HTML tags and using
regular expressions to identify and extract the stack traces,
Git revision numbers, operation types, and committed files.
Typically, small stack traces are very generic and would be
linked to multiple groups, confusing the results. Besides, they
seemed incomplete when compared to the others, so we only
collect stack traces with at least five frames. We also ignore
files added to the source code during a commit, since they
could not have appeared in the stack traces of the crash report
groups once they did not exist. In short, our study focused
only on Java files that were modified.

1https://github.com/taskadapter/redmine-java-api

Linking Issues with CrashReport Groups. (Fig 2, Step
3). We link an issue to a crash report group whenever a
stack trace STR in an issue is similar to at least one stack
trace STG of a crash report group. We used three criteria
to identify similarities. The first checks whether there is
any group of crash reports whose signature STG is pre-
cisely equal to the stack trace STR reported in the issue
(STR = STG). The second verifies if some group has the
same signature to the stack equivalent to STR (Equiva-
lent(STR) = STG). Finally, we match the stack traces and
crash report group signature by ignoring specific detailed mes-
sages of the system (ST WithoutMessages(Equivalent(STR) =
ST WithoutMessages(STG)), since might differ because of the
idiom.

Ranking suspicious files. (Fig 2, Step 4). In this step, for
each crash report group linked to a bug fix issue, we ranked
the suspicious files, following the procedures we detailed in
Section II-B. We generate lists with the Top 1, 3, 5 and 10
suspicious files. Top N ranked lists only contain code files
from each analyzed system, that is, we do not rank files from
third-party libraries. We select the system files filtering them
by package name.

Coarse-grained level evaluation. (Fig 2, Step 5) We eval-
uate the performance of our algorithm for ranking suspicious
buggy files by comparing the ranked list of suspicious files
with the list of committed files. We use the following metrics:

Recall@N: The percentage of pairs (Issue, CrashReport-
Group) where at least one of the files changed to fix a failure
was discovered by examining the Top N (N = 1, 3, 5, 10)
of the returned suspicious files. Thus, the higher the metric
values, the better the fault localization performance.

Mean Average Precision [25], [26]: Mean of the average
precision scores for a set of queries that quantifies the perfor-
mance of information retrieval:

MAP =

∑Q
q=1 AveP (q)

Q
(5)

where Q is the number of queries.

AveP =

∑n
k=1(P (k) ∗ rel(k))

number of relevant documents
(6)

where P (k) is the precision at cut-off k in the list, and
rel(k) is an indicator function equaling 1 if the item at rank
k is a relevant document, and zero otherwise.

In our case, Q is the number of pairs (Issue, CrashReport-
Group). The relevant documents are the files changed to solve
the Issue, and the queries are the Top N (N = 1, 3, 5, 10) of the
returned suspicious files for the CrashReportGroup. The higher
the MAP value, the better the fault localization performance.

Fine-grained level evaluation. (Fig 2, Step 6). The purpose
of this step is to verify whether the modified methods to fix the
bug are among those suggested by our approach, that is, if they
appear in the stack traces of the respective crash report group.
For each one of the identified files, that is, the committed
files present in the top N suspicious files, we request the

development team to mine the Git code repository to identify
the methods that have been changed in the bug-fixing commits.
We then processed the stack traces of the groups that revealed
buggy files to count the number of times a given method
appears in the stack trace. We did this counting based on the
full qualified name of methods, which includes the class and
package names. We also compared the changed methods for
each committed file with the methods present in the stack
traces, to verify if they were the most frequent ones. Finally,
we count how many methods from each of the identified files
have appeared in the group’s stack traces, even if it has not
been changed in the commits.

IV. RESULTS AND DISCUSSION

Here we present the main findings of our research. In
Section IV-A we detail the assessment of our approach at
the coarse-grained level (files), answering our first research
question. In Section IV-B we present the results of our second
assessment, at the fine grained-level (methods)—and thus
answering our second research question.

A. First Assessment: Coarse-grained level

To answer the first research question, we aggregate crash
reports into groups, extract bug fix issues, and link them
according to the steps described in Section III-C. For each
group linked to an issue, we rank suspicious files based on
stack traces. Finally, we compared the list of committed files
to fix the bug with the ranked list of suspected buggy files
from the crash report group linked to the issue.

The total number of crash reports processed for SYS1,
SYS2, and SYS3 were, respectively, 74 331, 6547, and 4144.
Table II shows the total of crash reports and the number
of groups at each level, using identical stack trace criteria,
equivalent signature, rule 1, rule 2, and rule 3. Note that
the configuration rule 1+2+3 formed a small number of
groups, reducing the number of crash report groups from
575 (after applying rule 1+2) to 539 (after applying rule
1+2+3). It is important to observe that the rules are applied
cumulatively. That is, we always use the Identical Stack Trace
and Equivalent Signature rules before applying rule 1.

TABLE II
CRASH REPORTS

Identical Equivalent Rule Rule Rule
System CRa STb ST 1 1+2 1+2+3
SYS1 74331 28374 7671 4409 334 308
SYS2 6547 3486 1009 745 123 121
SYS3 4144 1961 1540 918 118 110
Total 85022 33821 10220 6072 575 539
aCrash Report; bStack Trace

We found 281(from a total of 3238 issues analyzed) bug fix
issues with reported stack traces. In addition, 144 have both
stack trace and associated code commits to fix the bug. In
some cases, the stack traces are too small, they have less than
five frames. Therefore we ignored them in the study. We also
ignored non Java source code files linked to the bug-fixing

commits. At the end, we selected 113 issues with stack traces
with more than five frames, and whose bug fixes changed
Java implementation files. Table III shows the number of (bug)
fixed issues of each system, issues with reported stack traces
by users or developers, issues with reported stack traces and
changed files, and selected issues.

TABLE III
ISSUES

Issues with Issues with Selected
System STa STa & CFb Issues
SYS1 158 98 78
SYS2 96 31 21
SYS3 27 15 14
Total 281 144 113
aReported Stack Trace; bChanged File

The last step in the development of our dataset was to link
the issues with the groups. We conducted the study with the
application of rule 1, rules 1 and 2, and the three rules together.
Table IV shows the number of pairs formed among issues and
crash report groups, the number of distinct issues and groups
for each system, taking into account the groups formed up
to the application of rule 1, rule 1+2 and rule 1+2+3. The
formed links involved 6752 (8% of the total) crash reports
distributed in groups, and 113 (40% of the total of issues
with stack traces) selected bug issues. Using rule 1 only, some
issues link to more than one group, so the number of groups
(131) is greater than the number of issues (101), which is the
same in all combinations, and more pairs between issues and
crash report groups (132) are formed. Applying rule 2, some
groups formed by rule 1 were aggregated into one, decreasing
the number of groups (89) and pairs (111). It is important to
mention that the number of issues linked to the same group
has increased. Similar behavior occurred when we added the
rule 3. However, the number of pairs has not changed since
more than one issue has linked to the same group.

The average number of modified files per issue was 2.79 in
our dataset, the median was 1 file, and the standard deviation
of 5.22 files. In 62.37% of the cases, the issues had a single
file modified, 2 files were changed in 18.81% of the cases, 3
files in 3.9% of the cases, 4 files in 3.9% of the cases, and
more than 4 files in 10.89% of cases.

For each crash report group in our dataset, we rank the
suspicious files and we evaluate the performance of the ranking
approach comparing the Top N suspicious files with files
effectively changed to fix the bug (committed files).

We measure the overall performance of our approach by
calculating the recall and MAP metrics considering all pairs
(Issue, CrashReportGroup) for the three systems. Fig. 3 shows
the values found for the recall and MAP metrics, considering
the ranked list of Top with 1, 3, 5, and 10 suspicious files. It
also exhibits the values for these metrics when applying rules
1 alone (blue bars), rules 1 and 2 together (red bars), and
the three rules together (brown bars). It is important to notice
that rule 1 alone obtained superior values for the recall and
precision metrics, and that it was possible to get the best results

for both metrics by analyzing only three suspicious files.
The recall and MAP values decrease when we consider rules
1+2 and 1+2+3 for the Top 10 suspicious file configuration.
Nonetheless, applying rules 1 and 2 together decreased the
number of crash report groups from 6072 to 575. There is
a clear trade-off here: although the approach for grouping
crash reports reduces significantly the amount of information
developers need to analyse, it leads to a negative impact on
both metrics we use in our research (Recall@N and MAP).

We can also observe similar values for the recall and
precision metrics when applying rule 1 for the Top 3, 5 and
10 suspicious files in Fig. 3. The reason for that is because of
the use of Rule 1 (Crash Type Signature) groups very similar
stack traces that keep stable the number of suspicious class
files. With a smaller number of suspicious files to rank, during
the comparison with the changed files from bug fix issues, they
usually appear in the Top 3, and as a consequence, also in the
Top 5 and 10, when applying rule 1.

Top 1 Top 3 Top 5 Top 10
0

20

40

60

80

100

61.4

77.3 77.3 77.3

51.4

67.6
72.1 73.9

48.7

64
68.5 69.4

R
ec

al
l@

N
(%

)

Rule 1 Rules 1+2 Rules 1+2+3

Top 1 Top 3 Top 5 Top 10
0

20

40

60

80

100

41.4

55.4 55.5 55.5

35.7

44.4 45.9 46.4

33.8

42.8 44.1 44.4

M
ea

n
A

ve
ra

ge
Pr

ec
is

io
n

(%
)

Rule 1 Rules 1+2 Rules 1+2+3

Fig. 3. Mean of Recall and Precision

We also measured the number of distinct issues for which
it was possible to identify at least one changed file. We did
this to investigate if the number of distinct issues also varies
depending on the rules. The higher the number of found
distinct issues, the better the fault localization performance.

TABLE IV
PAIRS FORMED WITH ISSUES AND CRASH REPORT GROUPS

System
rule 1 rule 1+2 rule 1+2+3

Pairsa Distinct Distinct Pairsa Distinct Distinct Pairs Distinct Distinct
Issues Groups Issues Groups Issues Groups

SYS1 98 72 97 81 72 62 81 72 53
SYS2 20 19 20 19 19 17 19 19 17
SYS3 14 10 14 11 10 10 11 10 09
Total 132 101 131 111 101 89 111 101 79
a(Issue, CrashReportGroup)

Table V shows the total number of issues per system, and the
number of distinct issues for which it was possible to identify
at least one file that introduced a bug by looking at the first
1, 3, 5 and 10 suspicious files for each combination of rules
analyzed. We can see that the number of issues decreases or
remains the same in most cases when we add rules 2 and 3.
For example, analyzing the Top 10 ranked list for SYS1, we
found 57 issues using only rule 1. This value decreased to 53
issues when we added rule 2 and again decreased to 48 when
rule 3 was added.

We also calculated recall and precision, considering only
issues that had a maximum of three files modified to verify if
the values changed significantly when the number of changed
files per issue is smaller. In this case, the average of files
changed per issue was 1.31, the median was 1, and the
standard deviation was 0.56. Fig. 4 shows that the values of
recall and precision metrics have improved in this scenario.
Comparing with Fig. 3, we can see that the recall values
varied between 0.31% and 3.26%, and the most significant
differences obtained (80.5% to 77.3%) are related to the Top
3, 5, and 10 when applying only rule 1. The values of MAP
varied more (between 4.35% and 8.06%) than the recall values,
and the biggest differences also occurred applying only rule 1
- MAP values from 55.4% to 63.5%.

Answer to RQ1: Our study gives evidences that it is
possible to identify faulty files from Java web-based systems—
after grouping crash reports exclusively based on stack traces.
When considering the top 3, top 5, and top 10 files, it was
possible to identify one of the buggy files (that is, the file
developers changed to fix an issue) in 77% of the cases (when
considering the application of rule 1).

Given the obtained results, we investigated the pairs (Issue,
CrashReportGroup) for which no files modified to fix the error
appeared in the Top 10 suspicious files. This fact occurred for
30 pairs (22.72%) when we applied only rule 1 and in all cases
no modified files appeared in the stack traces of the groups
linked to the issue. Applying the rules 1 and 2 together, we
noticed that the same situation occurred for 29 pairs (26.12%),
where for 5 of them, the modified file appeared above the
Top 10. Applying the three rules together, for 11 of 34 pairs
(30.63%), at least 1 modified files appeared above Top 10. We
noticed that with the application of rules 2 and 3, more stack
traces were grouped, increasing the number of suspicious files.
As a consequence, there was a change in the rank of suspicious

Top 1 Top 3 Top 5 Top 10
0

20

40

60

80

100

63.7

80.5 80.5 80.5

51

68.8
74 76

49

65.6
69.8 70.8

R
ec

al
l@

N
(%

)

Rule 1 Rules 1+2 Rules 1+2+3

Top 1 Top 3 Top 5 Top 10
0

20

40

60

80

100

47.4

63.5 63.5 63.5

40.3

50.2 51.8 52.4

38.2

48.4 49.7 50.1

M
ea

n
A

ve
ra

ge
Pr

ec
is

io
n

(%
)

Rule 1 Rules 1+2 Rules 1+2+3

Fig. 4. Mean of Recall and Precision, considering issues that had a maximum
of three modified files

files, removing from the Top 10 some modified files that fixed
the bug. This happens because unrelated groups share the same
top frame file and consequently are aggregated by rule 2.

Finally, we investigated the reasons that lead rule 1+2+3 to
merge only a small group of crash reports. We found that only
4.9% of are FCSFs common to at least two groups had source
code files from one of the studied systems. We observe that
most of the clusters built by rule 3 occurred because of generic
FCSFs, consisting of files other than the source code of the
system. A large number of method calls present in the stack
traces are from third-party library classes such as Apache, Java
Server Faces, Hibernate or libraries developed by the company

TABLE V
DISTINCT ISSUES FOUND

System Issues
Distinct issues found

Rule 1 Rules 1+2 Rules 1+2+3
Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10 Top 1 Top 3 Top 5 Top 10

SYS1 72 43 57 57 57 36 49 51 53 34 46 48 48
SYS2 19 13 14 14 14 11 15 15 15 10 14 14 15
SYS3 10 5 7 7 7 5 5 7 7 5 5 7 7
Total 101 61 78 78 78 52 69 73 75 49 65 69 70

itself and shared by various applications. This generic FCSFs
may have caused the union of unrelated crash report groups.

B. Second Assessment: Fine-grained level

In collaboration with the development teams of the systems,
we extracted the name of the methods that have been changed
in the bug-fixing commits by mining these information from
the issue tracker system and Git code repository. After that, we
checked whether those methods appear on the list of suggested
methods of our approach. The list represents the methods that
appeared most frequently in the stack traces of the respective
crash report group. Finally, we checked how many methods
from each of the identified files were present on the stack
traces of the respective crash report group.

Fig. 5 shows the frequency of changed methods from bug fix
issues in stack traces of the crash report groups. It is possible
to see that about 80% of the changed methods (the methods
developers changed to fix a bug) appeared in the stack traces of
the crash report groups with some variation depending on the
considered rules. In particular, we found 79.53% of changed
methods when using rule 1, 82.5% using rule 1+2, and 82.1%
using rule 1+2+3.

Fig. 5 also highlights if the changed methods in the bug
fix issues have been found as the most frequent, as frequent
as other methods, or the least frequent in the stack traces
groups. Our research reveals that the method changed to fix a
bug is the most frequently found on stack traces of the crash
report groups (from 55.79% to 57.48%) when compared to
other methods of the same buggy file that also appears in
stack traces. In addition, the changed methods that appeared
the same number of times as other unchanged methods were
present between 17 and 28 times in the stack traces groups.
In only 8 cases, which occurred when applying rules 1 and 2,
or rules 1, 2 and 3 together, the modified methods were not
the most frequent, that is, some other unchanged method of
the same file appeared more often.

Fig. 6 shows how many methods from each of the identified
files were present on the stack traces of the respective crash
report group considering the different rules. Regarding the
groups formed only by rule 1, a single method of the changed
file appeared in the stack traces in 62.20% of the cases. In
29.92%, two methods were found, and three or more appeared
in 7.87%. We obtained very similar results using rules 1 and 2
in conjunction or the three rules together, a single method of
the file appeared in stack traces in about 48% of cases. Two
methods were found in about 25% of the stack traces, and we

Rule 1 Rules 1+2 Rules 1+2+3
0%

20%

40%

60%

80%

100%

83.5%
8

82.1%
8

79.53%
28 75.26%

19
73.68%

17

57.48%
73

55.67%
54

55.79%
53

Most frequent
As frequent as other methods

Less frequent

Fig. 5. Frequency of changed methods in crash report groups

also found three or more methods in about 25% of the cases.
These results suggest that in most cases (between 74% and
92%) one or two methods from an changed file appear in the
stack traces of the crash report groups.

0 20 40 60 80 100

Rule 1

Rule 1+2

Rule 1+2+3

7.87

25.77

25.81

29.92

25.77

25.81

62.2

48.45

48.38

Frequency (%)

One method Two methods Three or more methods

Fig. 6. Percentage of methods of the identified files present in crash report
groups

Answer to RQ2: Our study suggests that from 79.53% to
83.51% of the changed methods appear in stack traces of the
associated crash report group, depending on the considered set

of rules. This finding supports previous research work, high-
lighting that crash reports are an effective asset for locating the
root cause of bugs in both coarse and fine-grained scenarios.

We believe that the cases (between 16.49% and 20.47%)
where changed files (see Fig. 5) were identified and no
modified methods appeared in the stack traces from crash
report groups are related to the fact that the methods that
contain crash faults do not always reside in the crash stack
traces, as described in [1], [19]. Additionally, the failure may
not be located in a method. It may reside, for example, in
annotations related to object-relational mapping or to control
transient object instances.

V. THREATS TO VALIDITY

Construct validity threats. We may have made measurement
errors since we extracted stack traces and changed files to
fix bugs by parsing Redmine HTML issues reports. We also
obtained data from stack traces to group them using regular
expressions, and we map issues to crash report groups using
string matching. In order to mitigate such threats we have
carefully codified and tested our implementation. Bug fixing
commits can also have changes associated to code refactoring.
Because they are associated with bug fixing issues, it is
expected that a high number of the methods associated with
them are really fixing bugs. In our study, 72% of the bug
fixing commits have only one method modified, 17.5% have
two modified methods, and 10.5% have three or more modified
methods, thus showing a high probability that most of the
methods are associated with bugs.

Internal Validity Threats. We have extracted information
from the stack traces and changed files to fix bugs posted by
users, developers, and webhooks2 in Redmine. These pieces
of information may not be complete, and the quality of data
could affect fault localization performance.

External Validity Threats. These threats concern the pos-
sibility to generalize our results. We examined issues and
crash reports for three systems developed by a single company
that used the same technology to implement them. These
systems might represent the characteristics of a specific group
of software such as Java web-based information systems.
Additional studies need to be accomplished with other web-
based systems in order to generalize our findings.

VI. RELATED WORK

Dhaliwal et al. [21] verified that stack trace analysis of bug
reports reported automatically by Firefox can help to identify
between 57% and 80% of bugs. They also proposed a new
approach to group crash reports based on the similarity of stack
traces, creating the Trace Diversity metric, inspired by the
Levenshtein distance. They established a threshold to consider
that two elements belong to the same subgroup. The method
used by the Firefox team groups the crash reports using the
top method signature in the failing stack trace. The increment
proposed by Dhaliwal et al. [21] uses the similarity of the

2https://developer.github.com/webhooks/

stack traces to create subgroups, facilitating the location and
correction of the error by the developers. The study reports a
reduction of 5% in the error correction time.

Wang et al. [12] evolved the work previously published [11],
adding two more rules to the three that they had previously
proposed. They obtained significant results in the empirical
study with data from Firefox and Eclipse projects. They
identified fault correlation groups using stack trace information
with precision of 91% and recall of 87% for Firefox, and
precision of 76% and recall of 61% for Eclipse. Our work uses
the first three rules proposed by them to group crash reports
using stack traces [11]. The main difference is that they started
from the crash types generated by Socorro - the Mozilla’s
Crash Reporting System [3], and applied the rules to correlate
these crash types. We build our groups from the beginning,
so we made some adaptations like creating groups using rules
1 and 2. After that, we extract the FCSFs for each of those
groups and then regroup using rule 3. We did not measure
the performance of our grouping method to compare with the
studies of Wang et al. since we found only two occurrences of
issues marked as duplicate or related in our dataset. The two
other rules proposed by them use occurrence times of crash
events and textual similarity among user comments about the
crash events to identify correlations among types of failures.
We do not discuss either aspect of our work. The algorithm to
locate and rank buggy files proposed in their study achieved
42% of precision and 62% of recall for Firefox, along with
50% of precision and 52% of recall for Eclipse, analyzing the
Top 3 suggested files. The recall value increased when they
analyzed the Top 10 candidates, getting 92% for Firefox and
90% for Eclipse. In our study, we obtained better results for
Top 3 using the rule 1, being able to find at least one of the
modified files to correct the bug in 77.3% of the cases and
with a mean average precision of 55.4%. Analyzing the Top
10 suspicious files, the best value of recall was 77.3%, with
MAP of 55.5%, also using the rule 1.

Wu et al. [19] proposed a method called CrashLocator
to locate faulty functions by using an approach to expand
crash stack information and generate approximate crash traces
by discovering defective functions that are not present in the
stack trace. Four factors are used to locate faults: function
frequency, inverse bucket frequency, inverse average distance
to crash point, and function’s lines of code. They used Mozilla
Foundation’s runtime failure data and found 50.6%, 63.7%
and 67.5% of failures while examining the Top 1, 5 and
10 functions recommended by the CrashLocator. They also
improved Recall@10 metric values ranging from 23.2% to
45.8% when compared to conventional methods that only
analyze the stack trace. In our work, we take inspiration from
three of the four discriminative factors proposed by them,
since no source code analysis was done. The granularity level
studied by us (files) was greater than the researched by them
(methods). We also did not expand the crash stack, that is,
we only grouped crash reports based on the files found in
the stack traces. We obtained the best mean recall results of
61.4%, 77.3%, and 77.3%, and MAP of 41.4%, 55.5%, and

55.5%, examining top 1, 5 and 10 suggested files, respectively.
We already expect better results, since our approach looked
for coarse-grained artifacts (files) while they looked for fine-
grained ones (functions/methods). Although our goal was not
to find buggy methods, we found that combining our approach
to identify defective files with the analysis of the most frequent
methods in the stack traces of the group has the potential to
indicate the most likely to be faulty.

Even using different metrics and analyzed a smaller volume
of issues and crash reports, we believe that our results were
consistent with those reported by Wang et al. [12] and Wu et
al. [19].

VII. CONCLUSIONS AND FUTURE WORK

In this paper we explored the landscape of using stack traces
available in crash reports to locate coarse-grained (classes or
files) and fine-grained (functions or class methods) compo-
nents that are likely to have introduced a failure. To this end,
we implemented a crash report grouping approach based on
previous research contributions. Our approach aims to indicate
buggy components and thus reduce the cognitive effort to
identify the root causes of a system crash.

We discussed an assessment of our approach using three
non-trivial Java web systems, and our results bring new
evidence that the use of crash reports is an effective approach
for locating the origin of defects. For instance, using the
configuration of our approach with best performance, we were
able to correctly locate the file responsible for a crash in
almost 78% of the cases. This file was within the top 10
most suspicious files, according to such a configuration. In
addition, in more than 70% of cases, the method changed to
fix a bug appears in stack traces of crash report groups at least
the same number of times than the other methods of the buggy
file. We have also learned in our study that our crash report
grouping approach can benefit from the discarding of small
stack traces or stack traces that do not refer to specific classes
of the system.

We have presented the results of this study to the project
leaders of the investigated systems, and the company has
decided to use our approach in their software development
process. Currently, the development teams of the company are
using our list of suspicious buggy files and methods to correct
bugs related to the stack trace groupings. We will continue to
collect feedback of the usefulness, usability, and performance
of the approach in order to improve it.

ACKNOWLEDGMENT

This research was partially funded by INES 2.0, FACEPE
grants PRONEX APQ 0388-1.03/14 and APQ-0399-1.03/17,
CAPES grant 88887.136410/2017-00, and CNPq grant
425211/2018-5, and Coordenação de Aperfeiçoamento de Pes-
soal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

[1] L. An and F. Khomh. Challenges and issues of mining crash reports. In
2015 IEEE 1st International Workshop on Software Analytics (SWAN),
pp. 5–8, March 2015.

[2] K. Kovash. Dramatic stability improvements in firefox, 2010.
[3] L. Thomson. Socorro: Mozilla’s crash reporting system, 2012.
[4] N. Bettenburg et al. What makes a good bug report? In Proceedings

of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, pp. 308–318, 2008.

[5] A. Schroter et al. Do stack traces help developers fix bugs? In 2010
7th IEEE Working Conference on Mining Software Repositories (MSR
2010), pp. 118–121. IEEE, 2010.

[6] K. Kinshumann et al. Debugging in the (very) large: ten years of imple-
mentation and experience. Communications of the ACM, 54(7):111–116,
2011.

[7] A. Podgurski et al. Automated support for classifying software failure
reports. In 25th International Conference on Software Engineering,
2003. Proceedings., pp. 465–475. IEEE, 2003.

[8] F. Khomh et al. An entropy evaluation approach for triaging field
crashes: A case study of mozilla firefox. In 2011 18th Working
Conference on Reverse Engineering, pp. 261–270. IEEE, 2011.

[9] D. Kim et al. Which crashes should i fix first?: Predicting top crashes
at an early stage to prioritize debugging efforts. IEEE Transactions on
Software Engineering, 37(3):430–447, 2011.

[10] Y. Dang et al. Rebucket: a method for clustering duplicate crash reports
based on call stack similarity. In 2012 34th International Conference
on Software Engineering (ICSE), pp. 1084–1093. IEEE, 2012.

[11] S. Wang et al. Improving bug localization using correlations in
crash reports. In 2013 10th Working Conference on Mining Software
Repositories (MSR), pp. 247–256. IEEE, may 2013.

[12] S. Wang et al. Improving bug management using correlations in crash
reports. Empirical Software Engineering, 21(2):337–367, apr 2016.

[13] T. Ball et al. From symptom to cause: localizing errors in counterexam-
ple traces. In ACM SIGPLAN Notices, volume 38, pp. 97–105. ACM,
2003.

[14] J. A. Jones et al. Visualization of test information to assist fault
localization. In Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002, pp. 467–477. IEEE, 2002.

[15] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pp. 273–
282. ACM, 2005.

[16] S. Nessa et al. Software fault localization using n-gram analysis. In
International Conference on Wireless Algorithms, Systems, and Appli-
cations, pp. 548–559. Springer, 2008.

[17] C.-P. Wong et al. Boosting bug-report-oriented fault localization with
segmentation and stack-trace analysis. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 181–190. IEEE,
2014.

[18] Y. Gu et al. Does the fault reside in a stack trace? assisting crash
localization by predicting crashing fault residence. Journal of Systems
and Software, 148:88–104, 2019.

[19] R. Wu et al. CrashLocator: locating crashing faults based on crash stacks.
In Proceedings of the 2014 International Symposium on Software Testing
and Analysis - ISSTA 2014, pp. 204–214, New York, New York, USA,
2014. ACM Press.

[20] R. Wu et al. Changelocator: locate crash-inducing changes based on
crash reports. Empirical Software Engineering, 23(5):2866–2900, 2018.

[21] T. Dhaliwal et al. Classifying field crash reports for fixing bugs: A case
study of Mozilla Firefox. In 2011 27th IEEE International Conference
on Software Maintenance (ICSM), number November 2009, pp. 333–
342. IEEE, sep 2011.

[22] J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences.
In Proceedings. 20th international conference on data engineering, pp.
79–90. IEEE, 2004.

[23] X. Yan et al. Clospan: Mining: Closed sequential patterns in large
datasets. In Proceedings of the 2003 SIAM international conference
on data mining, pp. 166–177. SIAM, 2003.

[24] H. Kazato et al. Extracting and visualizing implementation structure of
features. In 2013 20th Asia-Pacific Software Engineering Conference
(APSEC), volume 1, pp. 476–484. IEEE, 2013.

[25] C. D. Manning et al. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[26] A. Ang et al. Revisiting the practical use of automated software fault
localization techniques. In 2017 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW), pp. 175–182.
IEEE, 2017.

