Daniel Alencar da Costa

Understanding the Delivery Delay of
Addressed Issues in Large Software Projects

Natal, RN, Brazil
February, 2017

Daniel Alencar da Costa

Understanding the Delivery Delay of Addressed Issues
in Large Software Projects

A thesis submitted to the Computer Sci-
ence Graduation Program of the Centro
de Ciéncias Exatas e da Terra in confor-
mity with the requirements for the De-
gree of Doctor of Philosophy

Federal University of Rio Grande do Norte - UFRN
Centro de Ciéncias Exatas e da Terra

Programa de P4s-Graduacao em Sistemas e Computacao

Advisor: Uira Kulesza

Advisor: Ahmed E. Hassan

Natal, RN, Brazil
February, 2017

Catalogacdo da Publicacdo na Fonte. UFRN / SISBI / Biblioteca Setorial
Especializada do Centro de Ciéncias Exatas e da Terra — CCET.

Costa, Daniel Alencar da.

Understanding the delivery delay of addressed issues in large software projects /
Daniel Alencar da Costa. — Natal, RN, 2017.

152 f. :il.

Orientador: Uira Kulesza.
Coorientador: Ahmed E. Hassan.

Tese (Doutorado) — Universidade Federal do Rio Grande do Norte. Centro de

Ciéncias Exatas e da Terra. Departamento de Informatica e Matematica Aplicada.
Programa de P6s-Graduagdo em Sistemas e Computagao.

1. Software maintenance. 2. Addressed issues. 3. Mining software repositories.
I. Kulesza, Uird. 1. Hassan, Ahmed E. Il1. Titulo.

RN/UF/BSE-CCET CDU 004.416

Acknowledgements

I belive that behind every scientific work there is an untold story that cannot be
expressed by the methodologies, statistics and conclusions that are reported in the
scientific papers. I dedicate this page to express my gratitude to some of the important
pieces of my story.

First and foremost, I would like to thank God for his blessings on every tiny step
that was necessary to conceive this thesis. Among His blessings, would like to start
thanking my advisor Ahmed E. Hassan. Without his guidance and incentives, I would
not be able to achieve the current state of this thesis. I would also like to thank my men-
tor and friend Shane McIntosh. His mentorship was fundamental to shape my work. I
am also grateful to the co-authors of the publications that are directly and indirectly
related to this thesis, Surafel Lemma Abebe, Weiyi Shang, Roberta Coelho, Christoph
Treude, and Eduardo Aranha. Nevertheless, I could not have met these people without
the support of my advisor and friend Uird Kulesza, who always incentivized me to
travel abroad and learn new skills. I am very grateful for his permanent support since
my masters course.

I am really grateful for my family, Danilo Alencar da Costa, Bruno Alencar da
Costa, Carla Alencar da Costa, Maria Heliana Alencar da Costa, and Carlos Aradjo da
Costa. In my opinion, if one’s mind is able to deeply focus on a problem that leads to a
PhD thesis, its because there is a5lovely family on its background.

I have had the privillege of meeting wonderful friends during my PhD journey,
Mohamed Sami Rakha, Guilherme Goncalves, Gabriel dos Anjos Cavalcanti, Tiago
Targino, Hernani (Sanilton) Sarra Filho, and Suhas Kabinna. Their friendship was
essential to make my PhD experience much more enjoyable. The same holds for
my older friendships, Allan Santos dos Santos—which I consider an extension of my
family—and Thiago Reis da Silva.

Finally, I am thankful to my girlfriend Renata Sousa for always believing on me.
She has the talent to make me see myself as a better man.

Abstract

The timely delivery of addressed software issues (i.e., bug fixes, enhancements, and
new features) is what drives software development. Previous research has investigated
what impacts the time to triage and address (or fix) issues. Nevertheless, even though
an issue is addressed, i.e., a solution is coded and tested, such an issue may still suf-
fer delay before being delivered to end users. Such delays are frustrating, since end
users care most about when an addressed issue is available in the software system
(i.e, released). In this matter, there is a lack of empirical studies that investigate why
addressed issues take longer to be delivered compared to other issues. In this thesis,
we perform empirical studies to understand which factors are associated with the
delayed delivery of addressed issues. In our studies, we find that 34% to 98% of the
addressed issues of the ArgoUML, Eclipse and Firefox projects have their integration
delayed by at least one release. Our explanatory models achieve ROC areas above 0.74
when explaining delivery delay. We also find that the workload of integrators and the
moment at which an issue is addressed are the factors with the strongest association
with delivery delay. We also investigate the impact of rapid release cycles on the deliv-
ery delay of addressed issues. Interestingly, we find that rapid release cycles of Firefox
are not related to faster delivery of addressed issues. Indeed, although rapid release
cycles address issues faster than traditional ones, such addressed issues take longer
to be delivered. Moreover, we find that rapid releases deliver addressed issues more
consistently than traditional ones. Finally, we survey 37 developers of the ArgoUML,
Eclipse, and Firefox projects to understand why delivery delays occur. We find that
the allure of delivering addressed issues more quickly to users is the most recurrent
motivator of switching to a rapid release cycle. Moreover, the possibility of improving
the flexibility and quality of addressed issues is another advantage that are perceived by
our participants. Additionally, the perceived reasons for the delivery delay of addressed
issues are related to decision making, team collaboration, and risk management ac-
tivities. Moreover, delivery delay likely leads to user/developer frustration according
to our participants. Our thesis is the first work to study such an important topic in
modern software development. Our studies highlight the complexity of delivering
issues in a timely fashion (for instance, simply switching to a rapid release cycle is not
a silver bullet that would guarantee the quicker delivery of addressed issues).

Keywords: Addressed Issues. Delivery Delay. Mining Software Sepositories. Software
Maintenance.

Publications

Earlier versions of the work in this thesis were published as listed below:

¢ Studying the Impact of Switching to a Rapid Release Cycle on Integration De-
lay of Addressed Issues - An Empirical Study of the Mozilla Firefox Project.
Daniel Alencar da Costa, Shane McIntosh, Uira Kulesza, and Ahmed E. Hassan.

In Proceedings of the 13th International Conference on Mining Software Reposi-
tories (MSR) , 2016, pp. 374-385.
®Received the ACM SIGSOFT distinguished paper award ¥

* An Empirical Study of Delays in the Integration of Addressed Issues.
Daniel Alencar da Costa, Shane McIntosh, Surafel Lemma Abebe, Uira Kulesza,

and Ahmed E. Hassan. In Proceedings of the 30th International Conference on
Software Maintenance and Evolution (ICSME), 2014, pp. 281-290.
WYNominated for best paper award ¥

The following publications are not directly related to the work that is presented in this
thesis. Instead, they were produced in parallel to the research performed in this thesis.

* A Framework for Evaluating the Results of the SZZ Approach for Identify-
ing Bug-Introducing Changes. Daniel Alencar da Costa, Shane McIntosh, Weiyi

Shang, Uiréd Kulesza, Roberta Coelho, and Ahmed E. Hassan. In the Transactions
of Software Engineering Journal (TSE), 2016, 18 pages.

* How does the Shift to GitHub Impact Project Collaboration? Luiz Felipe Dias,
Igor Steinmacher, Gustavo Pinto, Daniel Alencar da Costa, and Marco Gerosa.

In the 32nd International Conference on Software Maintenance and Evolution
(ICSME-ERA), 2016, 5 pages.

e Unveiling Developers Contributions Behind Code Commits: An Exploratory
Study. Daniel Alencar da Costa, Uird Kulesza, Eduardo Aranha, and Roberta

Coelho. In Proceedings of the 29th Annual ACM Symposium on Applied Comput-
ing (SAC), 2014, pp. 1152-1157.

* Assessing and Evolving a Domain Specific Language for Formalizing Soft-
ware Engineering Experiments: An Empirical Study. Marilia Freire, Uird
Kulesza, Eduardo Aranha, Gustavo Nery, Daniel Alencar da Costa, Andreas Jedl-

itschka, Edmilson Campos, Silvia Acufia, and Marta G6mez. International Journal
of Software Engineering and Knowledge Engineering (IJSEKE), 2014, pp. 1509-1531.

Figurel -
Figure 2 -
Figure 3 —
Figure 4 -

Figure 5 —

Figure 6 —

Figure 7 -

Figure 8 -

Figure 9 -

Figure 10 —

Figure 11 —

Figure 12 —

Figure 13 —

Figure 14 —

Figure 15 -

List of Figures

An overview of the scope of thethesis. 17
An overview of anissue’slifecycle. 22
An illustrative example of how we compute delivery delays. 25

Exploratory analysis of the studied projects. We present the ratio

of addressed issues per priority, severity, and the ratio of addressed

vs. not addressed yet issues (e.g.,, WONTFIX or WORKSFORME) .. 30
Data collection. An overview of our approach to collect the needed

data for studying deliverydelay. 34
Distribution of addressed issues per bucket. The issues are grouped

into next, after-1, after-2, and after-3-or-morebuckets. 36
Delivery delay in terms of days. The medians are 166, 107, and 146

days for the Eclipse, Firefox, and ArgoUML projects, respectively. . 36
Number of days between the studied releases of the ArgoUML,
Eclipse, and Firefox projects. The number shown over each box-
plotis the medianinterval. 38
Fix timing metric. We present the distribution of the fix timing
metric for addressed issues that are prevented from delivery in at
leastonerelease.. L 40
delivery delay during release cycle stages. Issues that are addressed
during more stable stages of a release cycle are likely to have a shorter
deliverydelay 43
Fix timingvalues for the code freeze period. The median fix timing
values drop from 0.45 and 0.52 to 0.41 and 0.35 in the Eclipse and
ArgoUML projects, respectively. 44
Training regression models. We follow the guidelines that are pro-
vided by Harrell Jr. (HARRELL, 2001) to train regression models,
which involves nine activities, from data collection to model val-
idation. The results of Steps 6.2 and is presented inRQ4. 50
Performance of random forest models. We show the values of Pre-
cision, Recall, F-measure, and AUC that are computed using the

LOOCVtechnique., 53
Variable importance scores. We show the importance scores that
are computed for the LOOCV of ourmodels. 57

The spread of issues among the Firefox components. The darker
the colors, the smaller the proportion of issues that impact that
COMPONENt. oo ittt e e e e 58

Figure 16 — The percentage of priority and severity levels in each studied

bucket of delivery delay. We expect to see light colour in the up-

per left corner of these graphs, indicating that high priority/severity

issues are delivered quickly. Surprisingly, we are not seeing such a

patterninourdatasets. oL 59
Figure 17 — Delivery delay per component. The Figure shows the distributions

of delivery delay in terms of days for each component of the studied

PIOJECES. . . . o o i e e e e e e e e e e e e 62
Figure 18 — Relationship between delivery delay in terms of releases and days.

We observe that a longer delivery delay in terms of releases is associ-

ated with a longer delivery delay in terms of days.. 64
Figure 19 — Addressed issues that have a prolonged delivery delay. We present

the proportion of addressed issues that have a prolonged delivery

delay per project. 13%, 12%, and 22% of the addressed issues of the

Eclipse, Firefox, and ArgoUML projects have a prolonged delivery

delay, respectively. o oo oL 65
Figure 20 — Variable importance scores. We show the importance scores that

are computed for the LOOCV ofourmodels. 67
Figure 21 — Backlog ofissues per addressed issue of the current release cycle.

The median number of concurrent fixes per addressed issue for the

Eclipse, Firefox, and ArgoUML projects are 3, 2, and 1, respectively. . 69
Figure 22 — Overview of the process to construct the dataset that is used in our

Study 2. 76
Figure 23 — A simplified life cycle of anissue. 79
Figure 24 — Time spans of the phases involved in the lifetime of anissue. 80

Figure 25 — Distributions of delivery delay of addressed issues grouped by minor

and majorreleases. e 82
Figure 26 — Release frequency (in days). The outliers in figure (b) represent the

major-traditional releases., 83
Figure 27 — Overview of the process that we use to build our explanatory models. 84
Figure 28 — The relationship between metrics and delivery delay. The blue line

shows the values of our model fit, whereas the grey area shows the

95% confidence interval based on models fit to 1,000 bootstrap sam-

ples. The parentheses indicate the release strategy to which the met-

ricisrelated. 90
Figure 29 — Nomogram of our explanatory models for the traditional release cycle. 91
Figure 30 — Nomogram of our explanatory models for the rapid release cycle. . 92
Figure 31 — Size of the addressed issues in the traditional and rapid release data. 92

Figure 32 — We group the addressed issues into “bugs” and “enhancements” by
using the severity field. However, the difference in the delivery delay
between release strategies is unlikely to be related with the type of
theissue. 93

Figure 33 — Software development experience of the participants. 102

Figure 34 — Development experience of the participants in the respective project. 102

Figure 35 — Experience of the participants with respect to rapid release cycles. . 103

Figure 36 — An overview of the roles of the participants. One participant may
have more thanonerole. 103

Figure 37 — Participants’ perception on how frequent is delivery delay. The data
is grouped by proportions of how many addressed issues are in-
cluded in the next possible release. This data refers to the responses
o question #6. e e e e e 104

Figure 38 — Frequency of ranks perfactor. 107

Figure 39 — Distribution of number of comments normalized by the number of
reportedissues. e e e 108

Figure 40 — Proportion of addressed issues that have their delivery delayed by a
given number of releases. For example, 89% of the addressed issues
skip two Firefox stable releases before being shipped to users (this
chart was already presented in Chapter3. 112

Tablel -

Table 2 —

Table 3 -

Table4 -

Table 5 —

Table 6 —

Table 7 -

Table 8 —

Table9 -

Table 10 —

Table 11 —

Table 12 —

Table 13 —

Table 14 —

Table 15 —

Table 16 —

Table 17 —

List of Tables

Overview of the studied projects. We present the number of studied
releases, issues, the studied period and the median time between
releases. e e e
Statistical analysis. An overview of the p-values and deltas that are
observed during our statistical analyses.
Reporter, Resolver and Issue families. Attributes of the Reporter,
Resolver and Issue families that are used to model the delivery delay
ofaddressedissues
Project family. Attributes of the Project family that is used to model
the delivery delay of an addressed issue.
Process family. Attributes of the Process family that is used to model
the delivery delay of an addressed issue.
The precision, recall, F-measure, and AUC values that are obtained
for the Eclipse, Firefox, and ArgoUML projects.
Regression results of model fit. Our explanatory models obtain R?
values between 0.39 to 0.65 and MAE values between 7.8 to 66 days. .
Explanatory power of attributes. We present the x* proportion and
the degrees of freedom that are spent for each attribute. The x? of the
two most influential attributes of each model areinbold.
Prolonged delivery delay thresholds. We present the median deliv-
ery delay in terms of days, the MAD, and the prolonged delivery delay
threshold foreach project.
Performance of the random forest models. The table shows the
values of Precision, Recall, F-measure, and AUC values that are com-
puted for the LOOCVofourmodels.
The studied traditional and rapid Firefox releases.
Metrics that are used in our explanatory models (Reporter, Resolver,
and Issue families).
Metrics that are used in our explanatory models (Project family).
Metrics that are used in our explanatory models (Process family). . .
Overview of the regression model fits. The y? of each metric is shown
as the proportion in relation to the total y? of the model.
Survey questions (excerpt). Each horizontal line indicates a page
break.
Participant range per subject project.

7

89

Table 18 — Rating of factors related to delivery delay. The highest ratings are in
bold.

Table 19 — P-values of the comparisons between factors. Values in bold are <
0.05. . . e

1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4

3.3.5

3.3.6

3.4

Contents

INTRODUCTIONt ittt ittt e et o nneensss 15
Problem Statement Lo L. 15
Current Research Limitations 16
ThesisProposal 16
Study 1—How frequent is delivery delay? 17
Study 2—Do rapid releases reduce delivery delays? 18
Study 3—Why do delivery delaysoccur? 18
ChronologyofStudies 18
Thesis Contributions 19
Thesis Organization 20
BACKGROUNDttt tiineeeonnneess 21
IssueReports 21
TriaginglIssues 22
AddressinglIssues 23
IntegratinglIssues 24
DeliveryDelay 24
ReleaseCycles 25
ChapterSummary. 26
HOW FREQUENT IS DELIVERYDELAY? 27
Introduction 27
Methodology 28
Subjects 29
DataCollection 33
Results 37

RQ1: How often are addressed issues prevented from being released? 37
RQ2: Does the stage of the release cycle impact delivery delay? . . 40
RQ3: How well can we model the delivery delay of addressed issues? 45
RQ4: What are the most influential attributes for modeling deliv-

erydelay? 55
RQ5: How well can we identify the addressed issues that will suf-
fer from a prolonged deliverydelay? 61
RQ6: What are the most influential attributes for identifying the
issues that will suffer from a prolonged delivery delay? 66

Discussion 68

3.5
3.5.1
3.5.2
3.6
3.6.1
3.6.2
3.6.3
3.7

4.1
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2

4.3.3

4.4
4.5
4.6
4.7

5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.3.1

5.3.2

5.3.3

5.4

Exploratory DataAnalysis 69

Backlog of Issues per AddressedIssue 69
Practical Suggestions o oL 70
Threatsto Validity 70
ConstructValidity 70
Internal Validity 70
External Validity 72
Conclusions 72
DO RAPID RELEASES REDUCE DELIVERY DELAY? 74
Introduction 74
Methodology 76
Subjects 76
DataCollection, 76
Results 78

RQ1: Are addressed issues delivered more quickly in rapid releases? 78
RQ2: Why can traditional releases deliver addressed issues more

quickly? 81
RQ3: Did the change in the release strategy have an impact on the

characteristics of delayed issues?. 83
Analysis of Potential Confounding Factors 91
Practical Suggestions L. 93
Threatsto Validity 94
Conclusions 95
WHY DO DELIVERY DELAYSOCCUR?o 97
Introduction o 97
Methodology 98
Subjects 98
Datacollection., 99
ResearchApproach 100
Demographics 102
Results 103

RQ1: What are developers’ perceptions as to why delivery delays
OCCUI? e 104
RQ2: What are the perceived impacts of rapid releases on delivery
delays? e 109
RQ3: Do participants agree with our quantitative findings about
deliverydelay? 111
Study Limitations 114

5.5

7.1
7.2

Conclusions e 114

RELATEDWORK ittt ittt it eeoeeoeeean 116
CONCLUSIONS & ¢ i ittt it ittt et nsssesan 118
Contributionsand Findings 118
FutureWork 120
BIBLIOGRAPHYttt ittt eennneens 121
APPENDIX 126
APPENDIX A - FIREFOXSURVEY v v v vt v o n 127
APPENDIX B — ARGOUMLSURVEY. 134
APPENDIX C - ECLIPSESURVEYo v v e 142
APPENDIX D - METHODOLOGYWEBPAGET 150
APPENDIX E - METHODOLOGYWEBPAGEII 151
APPENDIX F - INVITATIONLETTERo .. 152

APPENDIX G - INTERVIEWSCRIPT 153

14

1 Introduction

Attracting and retaining the interest of users are key factors for a software sys-
tem to achieve sustained success (SUBRAMANIAM; SEN; NELSON, 2009; DELONE;
MCLEAN, 2003). In this context, software development teams that do not address
issues that are reported by users, lead their software system to remain stagnant and
lose credibility. We broadly use the term issue to either describe a new feature, a bug,
or an enhancement that should be addressed in a software system (ANTONIOL et al.,
2008).

Within a globalized world, in which technology has fostered geographically
distributed software development (HERBSLEB; MOCKUS, 2003), software development
teams use Issue Tracking Systems (ITS, e.g., Bugzilla) to coordinate their tasks.! Users
can use ITSs to report issues within software systems. To do so, these users must fill in
areport that contain information about the issue (e.g., the description and severity of
the issue).

The basiclifecycle of an issue is comprised of four steps. First, an issue is reported
to the software project’s team. Once reported, an issue has to be triaged, i.e., the team
members must decide whether an issue should be addressed or not. In case that an
issue is deemed to be worth addressing, a team member with the right expertise is
assigned to the issue (ANVIK; HIEW; MURPHY, 2006). After being triaged, an issue is
addressed by its assignee, i.e., a solution is provided and tested for that issue. Finally,
the addressed issue is integrated and delivered to the end user through an official
release of the software system. Issues may also be reopened if the solution that was
provided to the issue is found to be incorrect. In this case, a new solution has to be
provided, tested, and integrated.

1.1 Problem Statement

Once an issue is addressed, (i.e., a solution for that issue is provided and tested),
such an addressed issue may still have a delay before reaching users. For instance,
Jiang et al. (JIANG; ADAMS; GERMAN, 2013) find that a reviewed code change might
take an additional 1-3 months to be integrated into the Linux kernel. Users care most
about when addressed issues will be available in the software system (so they can
benefit from those addressed issues). We use the term delivery delay to refer to the
delay that addressed issues suffer prior to their delivery to end users.

1 <https://www.bugzilla.org/>

https://www.bugzilla.org/

Chapter 1. Introduction 15

Delivery delay can be frustrating to users. For example, in a recent issue report
of the Firefox system, a user asks: “So when does this stuff get added? Will it be applied to
the next FF23 beta? A 22.01 release? Otherwise?”.> Moreover, in the open source software
community, developers may also be motivated to contribute because they want to
see a particular feature available in the software system in a timely manner (JIANG;
ADAMS; GERMAN, 2013). In such a case, delivery delays frustrate these contributors.

The present thesis is an effort to reduce the lack of empirical understanding as
to why addressed issues suffer delivery delay before being available to users. A good
understanding of such delays will help software projects reduce such undesirable
delays.

1.2 Current Research Limitations

Prior research has investigated the time that is needed to triage and address
issues (ANVIK; HIEW; MURPHY, 2005; ANBALAGAN; VOUK, 2009; GIGER; PINZGER;
GALL, 2010; KIM; WHITEHEAD JR., 2006; MARKS; ZOU; HASSAN, 2011; WEIB et al.,
2007; ZHANG; GONG; VERSTEEG, 2013). Such research provides valuable insight on
which issues should be prioritized. For example, issues might be addressed earlier
given the estimated time that they are likely to take to be addressed. Nevertheless, after
an issue is addressed, such an addressed issue may still require considerable time to
be delivered to users.

Another line of prior work has investigated the integration stage of software
development. Jiang et al. (JIANG; ADAMS; GERMAN, 2013) studied the likelihood of
patches that were submitted to the Linux Kernel project of being integrated in the main
code base. On the other hand, Choetkiertikul et al. (MORAKOT et al., 2015a; MORAKOT
et al., 2015b) studied the risk of issues of postponing the shipment of new releases.
However, the investigation of: (i) what leads addressed issues to suffer delivery delay
even when releases are shipped and (ii) the impact of release development strategies
on such delays remain as open challenges.

1.3 Thesis Proposal

The general research question that is investigated in this thesis is
what leads addressed issues to suffer delivery delay?

Figure 1 provides an overview of the scope of this thesis. The scope shows the
studies that we perform towards our general research question. The studies that are

2 <https://bugzilla.mozilla.org/show_bug.cgi?id=883554>

https://bugzilla.mozilla.org/show_bug.cgi?id=883554

Chapter 1. Introduction 16

Quantitative

Study 2:
Do rapid releases
reduce delivery
delays?

Study 1:
How frequent is
delivery delay?

Reasons for Impact of
delivery Study 3: release

delay Why do delivery strategies

(Theme 1) delays occur?* (Theme 11)

Qualitative
*According to the perception of developers

Figure 1 -An overview of the scope of the thesis.

performed in this thesis are grouped into two themes. Theme I is regarding reasons for
delivery delay, which encompasses Studies 1 and part of Study 3. In Theme II, we inves-
tigate the impact of release development strategies on the delivery delay of addressed
issues (Study 2 and part of Study 3). We present the motivation for conducting each
study of this thesis in the subsections below.

1.3.1 Studyl—How frequent is delivery delay?

33% of the code patches that are submitted to resolve issues of the Linux kernel
take 3 to 6 months to be accepted into an official release (JIANG; ADAMS; GERMAN,
2013). Such observation hints that the integration stage may introduce non-trivial
delays before delivering addressed issues. Since there is a lack of empirical studies that
investigate the frequency of delivery delays of addressed issues, we perform a study
using 20,995 addressed issues of the ArgoUML, Eclipse, and Firefox projects in Study 1.
Our main goal is to analyze (i) how frequent delivery delays occur and (ii) which factors
may impact delivery delay according to our studied data.

Also in this study, we investigate delivery delays that are considered to be pro-
longed in a particular project. For example, supposing that addressed issues are usually
delivered within 60 days on a particular project, a delivery delay of 120 days would be
abnormal for that project. This investigation is important because prolonged delays
can be more frustrating to users, since they are not used to such delays.

Chapter 1. Introduction 17

1.3.2 Study 2—Do rapid releases reduce delivery delays?

After an issue is addressed, a release must be shipped in order to end users
experience the addressed issue. The process of shipping releases varies according to
the release cycles that are adopted by the project team. Recently, many organizations
have shifted to shorter release cycles (e.g., 6 weeks rather than 12 months) with the
allure of delivering software issues more quickly to end users. For instance, Firefox,
Chrome, and Facebook have adopted shorter release cycles to ship major releases. In
Study 2, we empirically study whether shorter release cycles quicken the delivery of
addressed issues to end users. We set out to empirically compare the traditional and
rapid releases of the Firefox project regarding the delivery delay of addressed issues. In
total, we study 71,114 issue reports.

1.3.3 Study 3—Why do delivery delays occur?

In our other studies (Studies 1 and 2), we quantitatively investigate the delivery
delay of addressed issues. We perform several statistical analyses based on the data
that is publicly available on the ITSs and Version Control Systems (VCSs) of our subject
projects. Nevertheless, to better understand the reasons as to why delivery delays
occur, we survey 37 participants from the ArgoUML, Firefox, and Eclipse projects
about the delivery delay of addressed issues. We also perform follow up interviews with
four participants to get deeper insights about the responses that we receive. Study 3
help us to (i) reach additional insights that could not be possible by only performing
quantitative analysis and (ii) verify whether our participants agree with our findings
from the quantitative studies.

1.3.4 Chronology of Studies

The arrows in Figure 1 describe which studies inspired the others. Study 1 was
the first to be conducted in this thesis, since we were interested on investigating how
frequent and long are the delivery delays of addressed issues. After conducting Study 1,
we observed a considerable difference between the rapidly released Firefox and the
other two studied projects (i.e., Eclipse and ArgoUML) regarding the frequency of
delivery delays. In our second study (Study 2), we extended our Firefox dataset in
order to compare the traditional and rapid releases regarding delivery delays. Such an
investigation helps us on better understanding whether rapid releases may decrease
delivery delays in terms of days. Finally, both studies motivated us to perform Study 3.
We use mixed methods to perform our studies. As shown in Figure 1, we use quantitative
analyses in Studies 1 and 2 (i.e., statistics and machine learning techniques). On the

Chapter 1. Introduction 18

other hand, Study 3 is mainly qualitative, i.e., we use surveys and interviews to obtain
our data (although we perform some quantitative analysis as well).

1.4 Thesis Contributions

We outline the contributions of this thesis below. The contributions are grouped
by their respective study.

Study 1—How frequent is delivery delay?

* Despite being addressed well before an upcoming release, 34% to 60% of the
addressed issues are not integrated in more than one release in the ArgoUML
and Eclipse projects. Furthermore, 98% of the Firefox project issues had their
delivery delayed by at least one release (Chapter 3).

* Heuristics that estimate the effort that teams invest in fixing issues are the most
influential factors to estimate delivery delay in terms of number of releases
(Chapter 3).

e Surprisingly, priority and severity have little impact on delivery delay. Indeed,
36% to 97% of priority P1 addressed issues were delayed by at least one release
(Chapter 3).

 Shorter delivery delays are associated with issues that are addressed during more
controlled stages (e.g., a code freeze stage) of a given release cycle (Chapter 3).

e The time at which issues are addressed and the resolvers of the issues have great
impact on estimating the delivery delay (in terms of days) of an issue (Chapter 3).

e The time at which an issue is addressed (queue position), the integration work-
load (in terms of the backlog of addressed issues), and the heuristics that estimate
the effort that teams invest in fixing issues (fixing time per resolver), are the most
influential attributes for issues that have a prolonged delivery delay (Chapter 3).

* Our models that identify addressed issues that have a prolonged delivery de-
lay outperform random guessing and Zero-R models, obtaining AUC values of
0.82 to 0.96 (Chapter 3).

Study 2—Do rapid releases reduce delivery delays?

* Although issues tend to be addressed more quickly in rapid release cycles, ad-
dressed issues tend to be integrated into consumer-visible releases more quickly

Chapter 1. Introduction 19

in traditional release cycles. However, a rapid release cycle may improve the
consistency of the delivery rate of addressed issues (Chapter 4).

* The total time that is spent from the issue report date to its delivery into a release
is not significantly different between traditional and rapid releases (Chapter 4).

e In traditional releases, addressed issues are less likely to be delayed if they are
addressed recently in the backlog. On the other hand, in rapid releases, addressed
issues are less likely to be delayed if they are addressed recently in the current
release cycle (Chapter 4).

Study 3—Why do delivery delays occur?

* The perceived reasons for delivery delay of addressed issues are primarily related
to activities such as development, decision making, team collaboration, and risk
management (Chapter 4).

* The dependency of issues on other projects and team workload are the main
perceived reasons to explain our data about delivery delay in general (Chapter 4).

* The allure of delivering addressed issues more quickly to users is the most re-
current motivator for switching to a rapid release cycle. In addition, the allure
of improving management flexibility and quality of addressed issues are other
advantages of rapid releases that are perceived by our participants (Chapter 4).

e Integration rush and the increased time that is spent on polishing addressed
issues (during rapid releases) emerge as one of the main explanations as to why
traditional releases may have shorter delivery delays. (Chapter 4).

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we provide
the background material to the reader. In Chapter 3, Chapter 4, and Chapter 5, we
present Studies 1, 2, and 3, respectively. In Chapter 6, we present related research with
respect to this thesis. Finally, in Chapter 7, we draw our conclusions.

20

2 Background

In this chapter, we describe the key concepts that are necessary to understand
the studies that are performed in this thesis.

2.1 Issue Reports

One of the main factors that drives software evolution is the issues that are filed
by users, developers, and quality assurance personnel. Below, we describe what issues
are and the major steps involved in addressing and integrating them.

We use the term issue to broadly refer to bug reports, enhancements, and new
feature requests (ANTONIOL et al., 2008). Issues can be filed by users, developers, or
quality assurance personnel. To track development progress, software teams may use
an ITS such as Bugzilla® or JIRA.* Such ITSs allow for describing and monitoring the
state of the issue reports.

Each issue in an ITS has a unique identifier, a brief description of the nature of
the issue, and a variety of other meta-data. Large software projects receive plenty of
issue reports on a daily basis. For example, the Eclipse and Firefox projects respectively
received an average of 65 and 89 issue reports daily (from January to October 2016)
on their ITSs.>® The number of filed issues is usually greater than the size of the
development team.

Figure 2 shows the stages of an issue’s life cycle. After an issue has been filed,
project managers and team leaders triage them, i.e., assign them to developers, denot-
ing the urgency of the issue using priority and severity fields (ANVIK; HIEW; MURPHY,
2006) (time ¢I of Figure 2).

After being triaged, issues are then addressed (or fixed in case of bugs), i.e., solu-
tions to the described issues are provided by developers (time 2 of Figure 2). Generally
speaking, an issue may be in an open or closed state. An issue is marked as open when
a solution has not yet been found. We consider UNCONFIRMED, CONFIRMED, and
IN_PROGRESS as open states. An issue is considered closed when a solution has been
found.

Usually, a resolution is provided with a closed issue. For instance, if a developer

<https://www.bugzilla.org>
<https://www.atlassian.com/software/jira>
<https://bugs.eclipse.org/bugs>
<https://bugzilla.mozilla.org/>

(o2 N

https://www.bugzilla.org
https://www.atlassian.com/software/jira
https://bugs.eclipse.org/bugs
https://bugzilla.mozilla.org/

Chapter 2. Background 21

Issue ——O—O—O_O—_—»Solution
Time

New Assigned Fixed Released

Prior work
Focus of this thesis

Figure 2 - An overview of an issue’s life cycle.

made code changes to address an issue, the state and resolution combination should
be RESOLVED-FIXED. However, if the developer was not able to reproduce the bug,
then the state and resolution may be RESOLVED-WORKSFORME.’

Finally, addressed issues must be integrated into an official release (i.e., releases
that are intended for end users) in order to make them available (time 3 of Figure 2),
which is the life cycle stage that is mainly studied in this thesis. The life cycle of issues
is documented in detail on the Bugzilla website.? In the next sections, we describe the
stages of the life cycle of an issue.

Prior work studied the triaging and fixing time of issues (blue color in Figure 2). The
focus of this thesis is the study of the delivery delay (red color in Figure 2), which is

the needed time to deliver issues that are already addressed.

2.2 Triaging Issues

Issue triaging is the process of deciding which issues have to be addressed and
assigning the appropriate developer to them (ANVIK; HIEW; MURPHY, 2006). This
decision depends of several factors, such as the impact of the issue on the software or
how much effort is required to address the issue. Projects receive a high number of
issue reports, which is usually larger than the developer team. Hence, effective triaging
of issue reports is an important means of keeping up with user demands.

Hooimeijer and Weimer (HOOIMEIJER; WEIMER, 2007) built a model to classify
whether or not an issue report will be “cheap” or “expensive” to triage by measuring
the quality of the report. Based on their findings, the authors state that the effort
required to maintain a software system could be reduced by filtering out reports that
are “expensive” to triage. Saha et al. (SAHA; KHURSHID; PERRY, 2014) studied long
lived issues, i.e., issues that were not addressed for more than one year. They found that

7
8

<https://bugzilla.mozilla.org/page.cgi?id=fields.html>
<https://bugzilla.readthedocs.org/en/5.0/using/editing. html#life- cycle- of-a-bug>

https://bugzilla.mozilla.org/page.cgi?id=fields.html
https://bugzilla.readthedocs.org/en/5.0/using/editing.html#life-cycle-of-a-bug

Chapter 2. Background 22

the time to assign a developer and address such issues is approximately two years. Our
research complements these prior studies by investigating the time that is necessary
to deliver addressed issues rather than the time that is necessary to triage issues.

2.3 Addressing Issues

Once an issue is properly triaged, the assigned developer starts to address it. To
estimate the required time to address issues, some approaches used the similarity of an
issue report to prior issue reports (WEIB et al., 2007; ZHANG; GONG; VERSTEEG, 2013),
while others built prediction models using different machine learning techniques (PAN-
JER, 2007; ANBALAGAN; VOUK, 2009; GIGER; PINZGER; GALL, 2010; MARKS; ZOU;
HASSAN, 2011).

Kim and Whitehead (KIM; WHITEHEAD JR., 2006) computed the time that was
necessary to address issues in ArgoUML and PostgreSQL. They found that the median
issue fixing time is about 200 days. Guo et al. (GUO et al., 2010) used logistic regression
model to predict the probability that a new issue will be fixed. The authors trained
the model on Windows Vista issues and achieved a precision of 0.68 and recall of 0.64
when predicting Windows 7 issue reports. These approaches focus on estimating the
required time to address an issue. In our studies, however, we investigate the required
time to deliver issues that are already addressed.

Recent empirical studies assess the relationship between the attributes that are
used to build prediction models for estimating the fixing time of issues. Bhattacharya
and Neamtiu (BHATTACHARYA; NEAMTIU, 2011) performed univariate and multivari-
ate regression analyses to capture the significance of four attributes in issue reports.
Their results indicate that more independent variables are required to build better
prediction models.

Herraiz et al. (HERRAIZ et al., 2008) studied the mean time to close issues that
were reported to the Eclipse project and how severity and priority levels of the issues
affect such a time. In their study, the authors used one way analysis of variance to
group the different priority and severity levels that were used in the issue reports of
the Eclipse project. Based on their results, the authors suggest the reduction of the
currently used severity and priority levels to three levels.

Zhang et al. (ZHANG et al., 2012) investigated the delays incurred by developers
in the issue addressing process. The authors extract the duration of an issue (i.e., from
open to closed) using interaction logs. The authors investigated the impact of three
dimensions of attributes that are related to issues: issue report characteristics, source
code, and code changes. The authors found that attributes such as severity, operating

Chapter 2. Background 23

system, issue description, and number of comments are likely to impact the needed
time to start addressing an issue as well as the needed time to resolve an issue.

As Zhang et al. (ZHANG et al., 2012), we use attributes that are related to issue
reports to build explanatory models. Nevertheless, our goal is to study attributes that
share a relationship with the needed time to deliver addressed issues. We also investi-
gate the impact that severity and priority levels have on the delivery delay of addressed
issues.

2.4 Integrating Issues

After issues are addressed, they need to be integrated into an official release, so
users can be benefited from them. Usually, user-intended releases are shipped along
with release notes, which are documents that specify what was added, changed, or
removed in such new releases.’ Prior research has studied the integration of addressed
issues. Jiang et al. (JIANG; ADAMS; GERMAN, 2013) studied the integration process of
the Linux kernel. They found that 33% of code patches that were submitted to resolve
issues are accepted into an official Linux release after 3 to 6 months. Choetkiertikul er
al. (MORAKOT et al., 2015a; MORAKOT et al., 2015b) studied the risk of issues introduc-
ing delays to deliver new releases of a software project. In this thesis, our focus is on
the time that is required to deliver addressed issues rather than the process of patches
acceptance or the risk of a release schedule slippage.

2.5 Delivery Delay

Delivery delay refers to the time between the moment at which an issue is
addressed (i.e., changed to the RESOLVED-FIXED status) to the time at which such an
addressed issue is shipped to end users. In Studies 1 and 2, we analyze two dimensions
of delivery delay. The first dimension is comprised of two types of delivery delay, which
are: (i) delivery delay in terms of number of releases and (ii) delivery delay in terms of
days. As for the second dimension, we study the (iii) prolonged delivery delays.

Definition 1—Delivery delay in terms of releases. Figure 3 provides an example
of how we measure delivery delay. To compute the delivery delay in terms of number
of releases, we count the number of releases that a given fixed issue is prevented from
delivery. In Figure 3, Issue #1 is reported at time ¢, fixed at 3, and shipped at time 5.
The delivery delay in terms of releases for Issue #1 is the number of official releases that

¥ <https://www.mozilla.org/en-US/firefox/releases/>

https://www.mozilla.org/en-US/firefox/releases/

Chapter 2. Background 24

Shipped After 1 release

T1 T2 T3 T4 T5
Issue #1 is A release Issue #1 A release A release
reported is shipped is fixed is shipped s shipped

Figure 3 — An illustrative example of how we compute delivery delays.

are shipped between ¢3 and ¢5. Therefore, Issue #1 has a delivery delay of one release.

Definition 2—Delivery delay in terms of days. We compute delivery delay in
terms of days using an approach that is similar to Definition 1. However, instead of
counting the number of official releases, we count the number of days between ¢; and
ts (see Figure 3). For instance, if the number of days between ¢; and ;1) in Figure 3 is
30 days, the delivery delay of issue #1 would be 60 days.

Definition 3—Prolonged delivery delay. Prolonged delivery delay occurs when
the delivery delay in terms of days (see Definition 2) for a given addressed issue is
above one Median Absolute Deviation (MAD) of the median delivery delay of a studied
project. MAD is the median of the absolute deviations from one distribution’s median.
The higher the MAD, the greater is the variation of a distribution with respect to its
median (HOWELL, 2005; LEYS et al., 2013).

2.6 Release Cycles

A release cycleis the time period that is required by the development team to
develop and deliver a new release to end users. These releases could be made available
every few weeks or months, depending on the project release policy. Releasing every
few weeks is typically referred to as a rapid release cycle, while releasing monthly or
yearly is typically referred to as a traditional release cycle (MANTYLA et al., 2013).

In our studies, we consider a release cycle length in the scale of days or weeks
as a rapidrelease cycle. For example, the release cycle of the Firefox project is currently

Chapter 2. Background 25

6 weeks.!? On the other hand, we consider a release cycle length of several months or
years (e.g., 12-18 months) as a traditional release cycle. In Study 2, we study the impact
of adopting a rapid release cycle on the delivery delay of addressed issues.

2.7 Chapter Summary

In this chapter, we provide the key concepts that we use in our studies to the
reader. We first present the concept of an issue report, which can either represent an
enhancement, a new feature, or a bug that has to be addressed in a given project. Next,
we describe the life cycle of an issue, which is basically comprised of the triaging,
addressing, and integration stages. We then define the various types of delivery delay
that we study in this thesis. Finally, we describe the two types of release cycles that are
investigated in this thesis, which are the rapid and traditional release cycles.

10 <https://wiki.mozilla.org/Release_Management/Release_Process>

https://wiki.mozilla.org/Release_Management/Release_Process

26

3 How Frequent is Delivery Delay?

An ealier version of Study 1 appears in the
proceedings of the International Conference
on Software Maintenance and Evolution (IC-
SME’14) (COSTA et al., 2014).

3.1 Introduction

Since there is alack of empirical studies that investigate the frequency of delivery
delays of addressed issues, we perform a study using 20,995 addressed issues of the
ArgoUML, Eclipse, and Firefox projects. Our main goal is to analyze (i) how frequent
delivery delays occur and (ii) which factors may impact delivery delay according to
our studied data. Finally, we also investigate (iii) what leads to a prolonged delivery
delay. In this study, we address the following RQs:

* RQI: How often are addressed issues prevented from being released? 34% to 60%
of addressed issues within traditional release cycles (the ArgoUML and Eclipse
projects) skip at least one release. Furthermore, the delivery of 98% of the ad-
dressed issues skip at least one release in the rapidly released Firefox project.

* RQ2: Does the stage of the release cycle impact delivery delay? We observe that
issues that are addressed during more stable stages of a release cycle tend to have
a shorter delivery delay. We also observe that addressed issues are unlikely to
skip releases solely because they were addressed near a code freeze period.

* RQ3: How well can we model the delivery delay of addressed issues? Our mod-
els that are fit to study the delivery delay in terms of number of releases obtain
AUC values of 0.62 to 0.93. Our models that are fit to study the delivery delay in
terms of number of days obtain R? values of 0.39 to 0.65.

* RQ4: What are the most influential attributes for modeling delivery delay? We
find that the total fixing time that is spent per resolver in the release cycle plays an

Chapter 3. How Frequent is Delivery Delay? 27

influential role in modeling the delivery delay in terms of releases of an addressed
issue. On the other hand, we find that the time at which an issue is addressed
and the resolver of the issue have a large influence on the delivery delay in terms
of days. Moreover, attributes that are related to the state of the project are the
most influential in both types of delivery delay.

* RQ5: How well can we identify the addressed issues that will suffer from a pro-
longed delivery delay? Our models outperform naive models like random guess-
ing, achieving AUC values of 0.82 to 0.96.

* RQ6: What are the most influential attributes for identifying the issues that
will suffer from a prolonged delivery delay? Attributes that are related to the
state of the project, such as the integration workload, the period during which
issues are addressed, and the fixing time that is spent per resolver are the most
influential attributes for identifying the issues that will suffer from a prolonged
delivery delay.

Our results suggest that the total time that is invested per resolver in fixing the
issues of a release cycle has a large influence later in the process of deliverying ad-
dressed issues. Also, the number of issues that are waiting to be delivered can influence
the delivery delay of other addressed issues. Such results warn us that in addition to
the current focus of studies on triaging and fixing stages of the issue life cycle, the
integration and delivery stages should also be the target of future research and tooling
efforts in order to reduce the time-to-delivery of addressed issues.

Chapter Organization

This chapter is organized as follows. In Section 3.2, we present the methodology
that is used in our study. In Section 3.3, we present our obtained results. In Section 3.4,
we discuss and relate our observations along the studied types of delivery delay. We
perform an exploratory analysis on the backlog of issues of each studied project in
Section 3.5. In Section 3.6, we discuss the threats to the validity of our conclusions,
while we draw conclusions in Section 3.7.

3.2 Methodology

In this section, we describe the studied projects, explain how the data was
collected, and how we study the types of delivery delay that are presented in Section 2.5.

Chapter 3. How Frequent is Delivery Delay? 28

3.2.1 Subjects

In order to study delivery delay, we analyze three subject projects: the Firefox,
ArgoUML, and Eclipse projects, which are from different domains and sizes. The
ArgoUML project is a UML modeling tool that includes support for all standard UML
1.4 diagrams." The Eclipse project is a popular open-source IDE, of which we study
the JDT core subproject.!? The Firefox project is a popular web browser."

Figure 4 shows an exploratory analysis of our studied projects. We plot the pro-
portion of issues per priority and severity level, as well as the proportion of issues that
were addressed and not addressed (e.g., resolution is WONTFIX or WORKSFORME).
We observe that for the majority of the issues, the priority and severity levels remain at
the default value. For example, the vast majority of the priority values are set to P3 (in
the Eclipse and ArgoUML projects) or “- -” (in the Firefox project). We also observe
that Firefox is the project with the highest proportion of addressed issues.

Table 1 shows the studied period and range of releases, as well as the number
of releases and issue reports. We focus our study on the releases for which we could
recover a list of issue IDs from the release notes. We collected a total of 20,995 issue
reports from the three studied projects. Each issue report corresponds to an issue that
was addressed and could be mapped directly to a release. We present an overview of
the release engineering processes of each studied project below.

Eclipse Release Engineering

Therelease engineering of the Eclipse project is composed by nightly/integration
builds that are followed by milestones builds and release candidate builds. Nightly or
integration builds are the least stable builds and are tested by the early adopters that
are following the eclipse developer mailing lists. For instance, integration builds are
not supposed to be announced through links, blogs, or wikis that are related to the
respective Eclipse project.**

Milestone and release candidate builds are more stable and can be announced
by external links such as blogs and wikis. The goal is to reach external early-adopters
from outside the developer mailing lists. However, the external links that refer to such
builds should warn that they are not as stable as official releases. The main difference
between a release candidate build and a milestone build is that a release candidate

1
12
13
14

<http://argouml.tigris.org/>

<https://www.eclipse.org/>

<https://www.mozilla.org>
<https://eclipse.org/projects/dev_process/development_process.php#6_Development_
Process>

http://argouml.tigris.org/
https://www.eclipse.org/
https://www.mozilla.org
https://eclipse.org/projects/dev_process/development_process.php#6_Development_Process
https://eclipse.org/projects/dev_process/development_process.php#6_Development_Process

Chapter 3. How Frequent is Delivery Delay? 29

/Not set/P5 </P4 </AP3 <BP2 <HP1
1.00+ —

o
\‘
SL

% of issues
o
Ul
o

0.25-
0.00- ‘ ——- 4:1:
Eclipse Firefox ArgoUML
(a) Priority values

YEnhancementTrivialdMinorZNormal@MajorBCriticallBlocker

0.8]

o
»

% of issues
o
D

0.2
00 et LM
Eclipse Firefox
(b) Severity values. The ArgoUML project does not use the sever-
ity field
/Fixed/Not fixed
0.75
(%]
)
?
©0.50
S
=0.25-
0.00- | | |
Eclipse Firefox ArgoUML

(c) Fixed issues vs. Not fixed yet

Figure 4 - Exploratory analysis of the studied projects. We present the ratio of ad-
dressed issues per priority, severity, and the ratio of addressed vs. not ad-
dressed yet issues (e.g.,, WONTFIX or WORKSFORME)

goes through a rigorous testing pass process.”

The testing pass process consists of intensive testing activities that are per-
formed by the development team and community to find regression and stop-ship
bugs. In case stop-ship bugs are found late in the process, the release schedule may be

5 <https://www.eclipse.org/eclipse/development/plans/freeze_plan_4_4.php>

https://www.eclipse.org/eclipse/development/plans/freeze_plan_4_4.php

Chapter 3. How Frequent is Delivery Delay? 30

slipped to accommodate the fixes for such bugs.

After the testing pass stage, a fixing pass stage starts. The fixing pass stage
consists on prioritizing and fixing the most severe bugs that are found at the testing
pass stage. By the end of a fixing pass stage, another release candidate is produced.
The process of performing testing passes and fixing passes is done through several
iterations (i.e.,, many release candidates are produced).

The last release candidate is submitted to a code freeze stage. The code freeze
is a period at which the rules to integrate changes in the software project becomes
more strict. For instance, new changes may be integrated only if they are solving
special requirements such as translations or documentation fixing.”® Such a period is
important because it helps the development team to stabilize the project just before
creating an official release.

Official releases are categorized as major, minor, and servicereleases.'® Major re-
leases include API changes. Minor releases add new functionalities but are compatible
with the API of prior versions. Finally, service releases include bug fixes only (i.e., with-
out significant addition of new functionality). Both major and minor releases have to
pass through a release review process. A release review aims at getting feedback about
the release cycle that was performed. The main goal is to find areas of improvement
and if the development process is being open and transparent.!”

Firefox Release Engineering

The release engineering process of the Firefox project uses a rapid (or a short)
release cycle, i.e., a release cycle of 6 weeks duration. In addition, the process also
include pipeliningreleases (also known as release training) as a means to stabilize the
official release, so that they can be shipped to end users.

The pipelining process develops releases through several channels. As the re-
lease progresses through these channels, the stability of the release increases and
less severe bugs are more likely to be uncovered. The Firefox project team uses four
channels to develop releases: NIGHTLY, AURORA, BETA, and RELEASE channels.'®

The NIGHTLY channel produces a release every night (i.e., as soon as features
are ready). This nightly release is built from the mozilla-central repository and has the
lowest stability of the channels.’® The AURORA channel produces a release every six
weeks. However, some new features may be disabled if they are not stable enough. At
the end of the cycle of the AURORA channel (the sixth week), the release management

16
17

<https://www.eclipse.org/projects/handbook/#release>
<https://www.eclipse.org/projects/handbook/#release-review>

18 <http://mozilla.github.io/process-releases/draft/development_overview/>
19 <https://hg.mozilla.org/mozilla-central />

https://www.eclipse.org/projects/handbook/#release
https://www.eclipse.org/projects/handbook/#release-review
http://mozilla.github.io/process-releases/draft/development_overview/
https://hg.mozilla.org/mozilla-central/

Chapter 3. How Frequent is Delivery Delay? 31

team decides which of the issues that were further stabilized are good enough to
migrate to the BETA channel. Again, the goal of the BETA channel is to stabilize the
new features and disable the features that are not stable enough by the end of the cycle.
Finally, the features that are stable enough to survive at the BETA channel are moved
further to the RELEASE channel, from which an official major release is produced.!®

In the Firefox release engineering process, the release schedule is not slipped to
accommodate issues that are not stable enough by the end of the release cycle. Instead,
the development team holds such issues back to be shipped in future releases when a
greater degree of stability is achieved.!® Also, an issue may be integrated directly into
the AURORA or BETA channels (i.e., the issue is uplifted), but such cases are exceptions
(e.g., very critical security issues that must be released as soon as possible).!®

The Firefox project also ships Extended Support Releases (ESR) that are based
on prior official Firefox releases. ESRs are meant to institutions such as business orga-
nizations, schools, and universities that need to manage their Firefox desktop client.
ESRs provide one year of support for security and bug fixes of prior Firefox official
releases. ESRs are important for organizations that are not able to follow the fast pace
that the Firefox major release evolves.?

ArgoUML Release Engineering

In the ArgoUML release engineering process, there are five types of releases:
development, alpha, beta, stable, and stable patch releases. Development releases are
the least stable, while stable releases are the official releases that are intended to be
widely adopted by the users.?

Developmentreleases are generated during the development stage. The develop-
ment stage may take from one to several months. During this stage, the development
team strives to produce a development release each month. Development releases are
not supposed to be used by end users. Such releases are only advertised to users if
there is a purpose of recruiting new developers to implement and test new features.?

After the development stage, the alpha stage starts. The alpha stage is also
referred as the enhancement freeze point. All of the enhancements that are not stable
enough before the start of the alpha stage are not included into the stable release.
According to the ArgoUML documentation, the alpha stage usually takes a “couple of
weeks” and the development team strives to make a release each week.?

The alpha stage is followed by the beta stage. The beta stage is also referred as
the bug-fix freezepoint, i.e., all of the (less severe) bug-fixes that could not be completed

20
21

<https://www.mozilla.org/en-US/firefox/organizations/faq/>
<http://argouml.tigris.org/wiki/How_to_Create_a_Stable_Release>

https://www.mozilla.org/en-US/firefox/organizations/faq/
http://argouml.tigris.org/wiki/How_to_Create_a_Stable_Release

Chapter 3. How Frequent is Delivery Delay? 32

Table 1 - Overview of the studied projects. We present the number of studied releases,
issues, the studied period and the median time between releases.

Project Studied period Releases # of # fixed issues Median time between
releases releases (weeks)

Eclipse 03/11/2003 - 21.1- 11 3344 16

(JDnT) 12/02/2007 3.2.2

Firefox 05/06/2012 - 13-27 15 3121 6
04/02/2014

ArgoUML 18/08/2003 - 0.14 - 0.34 17 14530 26
15/12/2011

before the start of the beta stage are omitted from the stable release. Such remaining
bugs are listed on the “known problems” document that is to be published along with
the stablerelease. Betareleases are more stable than alphareleases and are also referred
as release candidates. For instance, beta releases should not contain high priority bugs
(i.e., issues for which the priority is either P1 or P2). The beta stage is supposed to last
for a couple of weeks with a beta release being generated each week. Finally, the beta
stage is marked by intense testing activities after each release candidate. When the
team is confident that the beta release is stable enough, the official stable release is
generated with no code changes from the last beta release.?

The last type of ArgoUML release is the stable patchrelease. Stable patchreleases
are generated if critical bugs are found after the publication of the stablerelease. The
stable patchrelease contains the fixes for the eventual critical bugs that are found upon
stable releases.”! The ArgoUML team strives to ship a stablerelease every 8 months.>

3.2.2 Data Collection

Figure 5 provides an overview of our data collection approach—how we collect
and organize the data in order to perform our empirical study. We create a relational
database that describes the delivery of addressed issues in the studied projects. We
briefly describe our data sources, and each step that are involved in the database
construction process.

Step I: Fetch delivered issue IDs

In Step 1, we consult the release notes of each studied project to identify the
release into which an addressed issue was delivered. A release note is a document
that describes the content of a release. For instance, a release note might provide
information about the improvements that are included in a release (with respect
to prior releases), the new features, the fixed issues, and the known problems. The

22 <http://argouml.tigris.org/wiki/Strategic_Planning>

http://argouml.tigris.org/wiki/Strategic_Planning

Chapter 3. How Frequent is Delivery Delay? 33

Release
- Date
- Version

Release notes

Raw issue data
1.0 (sFt;'Z;) List (Step 2) (Step 3) Relesse lsse
>) > of > | Fetchissue |5 >| Compute | o
T |r.1tegra:tDed IDs data metrics DB ssue
1.1 issue IDs

Issue

- Priority
- Description

ITS

Figure 5 —Data collection. An overview of our approach to collect the needed data
for studying delivery delay.

Eclipse, ArgoUML, and Firefox projects publish their release notes on their respective
websites.”

Unfortunately, release notes may not mention all of the fixed issues that have
been delivered through a release. This limitation hinders the possibility of studying
issues that were fixed but have not been delivered, since we cannot claim that an issue
that is not listed in a release note was not delivered (e.g., the development team may
forget to list some delivered fixed issues). However, the fixed issues that are listed in a
release note are more likely to have been shipped to the end users (i.e., it is unlikely that
arelease note would mention a fixed issue that was not delivered). Hence, we choose to
use release notes as a means of linking fixed issues to releases in our database, despite
the incompleteness of such release notes—the release where we claim that an issue
has been delivered is more likely to be correct (we elaborate more on this point in
Section 3.6).

The output of Step 1is a list of the issue IDs that have been fixed and delivered.
To retrieve such a list for the Eclipse and Firefox projects, we wrote a script to extract
the listed issue IDs from all the release notes and insert them into our database. The
retrieved issue IDs are used to fetch the issue report meta-data from the corresponding
ITSs. In our database, we also store the dates and version number of each release.

Step 2: Fetch issue data

We use the collected issue IDs from Step 1 to retrieve information from their
corresponding issue reports, which are recorded in the ITSs. Not all release notes of
the ArgoUML project list the fixed issues of an official release. When they do, only a
few issues are listed (e.g., 1-4).>* To increase our sample of fixed issues for the ArgoUML

23
24

<https://www.mozilla.org/en-US/firefox/releases/>
<http://argouml.tigris.org/wiki/ReleaseSchedule/Past_Releases_in_Detail>

https://www.mozilla.org/en-US/firefox/releases/
http://argouml.tigris.org/wiki/ReleaseSchedule/Past_Releases_in_Detail

Chapter 3. How Frequent is Delivery Delay? 34

project, we rely on its ITS. We use the milestone field of the issue reports to approximate
the release into which an issue was delivered. Development milestones are counted
towards the next official releases. For instance, the development milestone 0.33.7% is
counted towards the official release 0.34. The output of Step 2 is the raw issue report
data that is collected from ITSs.

Finally, to determine when an issue was fixed, we use the latest change to the
RESOLVED-FIXED status of that issue. For instance, if an issue has its status changed
from RESOLVED-FIXED to REOPENED at ¢; and the status changes back to RESOLVED-
FIXED at ¢, (without changing again), we consider the corresponding date of ¢, as the
fix date. Also, we use the RESOLVED-FIXED status rather than the VERIFIED-FIXED
status, since we found that all of the issues that are mapped to releases went through
the RESOLVED-FIXED state before being delivered, while only a small percentage went
through the VERIFIED-FIXED state. For example, only 17% of fixed issues in the Firefox
project went through the VERIFIED-FIXED state. We focus on issues that were resolved
as RESOLVED-FIXED because they involve changes to the source and/or test code that
must be integrated into a release before becoming visible to end users.

Step 3: Compute metrics

After collecting the release date for each addressed issue, we compute all of
the attributes that may share a relationship with the types of delivery delay that are
presented in Section 2.5.

We first compute the delivery delay of addressed issues in terms of number of
releases (see Definition 1). We group this type of delivery delay into four buckets: next,
after-1, after-2, and after-3-or-more. The next bucket contains addressed issues that
are delivered immediately. The after-1, after-2, and after-3-or-more buckets contain
addressed issues for which delivery is skipped by one, two, or three or more releases,
respectively. Figure 6 shows the distribution of the addressed issues among buckets for
each studied project. The ArgoUML project has the highest percentage of addressed
issues that fall into the next bucket (66%), whereas next accounts for only 2% and 38%
of addressed issues in the Firefox and Eclipse projects, respectively.

Next, we compute the delivery delay in terms of number of days (see Defini-
tion 2). Figure 7 shows the distribution of delivery delay in terms of days for each
studied project. The Firefox project has the least skewed distribution of delivery delay.
We use both Definitions 1 and 2 of delivery delay to address RQ1-RQ4.

Finally, we identify issues that have a prolonged delivery delay in each studied
project (see Definition 3). We group addressed issues into prolonged delay and normal

% <http://argouml.tigris.org/issues/show_bug.cgi?id=4914>

http://argouml.tigris.org/issues/show_bug.cgi?id=4914

Chapter 3. How Frequent is Delivery Delay? 35

ZNext releaseZAfter 1 releaseZAfter 2 releases.After 3 or more releases

89%
"]
3 75
0 66%
L
©
Q
2
Q
o J
= 50
(&) 40%
—
(@)
IS 30%
=
s 25 23%
&
a 14% 14%
% 8% 6%
Oi 2% 1%
Eclipse Firefox ArgoUML

Figure 6 - Distribution of addressed issues per bucket. The issues are grouped into
next, after-1, after-2, and after-3-or-more buckets.

1500-

o o me- e

1000-

of days

i

o T T

EcIi'pse _Firéfox Argo'UML
Studied systems

Figure 7 -Delivery delay in terms of days. The medians are 166, 107, and 146 days for
the Eclipse, Firefox, and ArgoUML projects, respectively.

Chapter 3. How Frequent is Delivery Delay? 36

delay buckets. Addressed issues, of which delivery delay is at least one MAD above
the median delivery delay of a subject project, fall into the prolonged delay bucket.
Figure 7 shows that a prolonged delivery delay in one project may be a normal delivery
delay in another project (e.g., the ArgoUML project vs. the Firefox project). This figure
highlights the importance of performing this analysis for each project individually. We
use this data to address RQ5 and RQ6.

We use exploratory models to study the relationship between attributes of ad-
dressed issues (e.g., severity and priority) and delivery delay. Our goal is to understand
which attributes are important for modeling the delivery delay of addressed issues.

3.3 Results

In this section, we present the motivation, approach, and results for each inves-
tigated RQ.

3.3.1 RQI: How often are addressed issues prevented from being
released?

RQI: Motivation

Users and contributors care most about the time for an addressed issue to
become available rather than the time duration to fix it. In this regard, it is important
to investigate whether addressed issues are being delivered immediately (e.g., in the
next possible release) or not, since a large delivery delay may frustrate users. In RQ1,
we investigate how often addressed issues are being prevented from delivery. The
analysis of RQ1 is our first step toward understanding how long is the delivery delay of
addressed issues.

RQ1: Approach

We compute the delivery delay of addressed issues in terms of number of re-
leases and number of days (as shown in Definitions 1 and 2). Next, we analyze if ad-
dressed issues are being prevented from being released solely because their fix occurs
in the end of their release cycle. For instance, Rahman and Rigby (RAHMAN; RIGBY,
2015) observe a rush-to-release in which many issues are addressed near the release
date. For each addressed issue, we compute the fix timing metric, which is the ratio
between (i) the remaining number of days—after an issue is addressed—for an up-

Chapter 3. How Frequent is Delivery Delay? 37

600-
400-
2
©
I+
200- 180
L
112
\ 42
‘ e
0 ArgoUML Eclipse Firefox

Figure 8 - Number of days between the studied releases of the ArgoUML, Eclipse,
and Firefox projects. The number shown over each boxplot is the median
interval.

coming release over (ii) the duration in terms of days of its respective release cycle
(see Equation 3.1). The fix timing values range from 0 to 1. A fix timing value close to 1
indicates that an issue is addressed early in the release cycle, since the numerator and
denominator of Equation 3.1 would be close to each other.

days that is remaining for a release

3.1
release cycle duration (31)

RQI: Results

Finding 1—Addressed issues usually miss the next release in the Firefox project. Fig-
ure 8 shows the difference between the studied projects in terms of the time interval
between their releases. The median time in days for the Firefox project (42 days) is ap-
proximately ; that of the ArgoUML project (180 days), and that of the Eclipse project
(112 days). Unlike the Eclipse and Firefox projects, the distribution for the ArgoUML
project is skewed. In addition, Figure 6 shows that the vast majority of addressed is-
sues for the Firefox project is delivered after-2 releases, whereas for the Eclipse and
ArgoUML projects, the majority is delivered in the next release.

The reason for the difference may be due to the release policies that are fol-
lowed in each project. For example, Figure 8 shows that the Firefox project releases

Chapter 3. How Frequent is Delivery Delay? 38

consistently every 42 days (six weeks), whereas the time intervals between the releases
of the ArgoUML project vary from 50 to 220 days. Indeed, the release guidelines for
the ArgoUML project state that the ArgoUML team should release at least one sta-
ble release every 8 months (see Section 20). The delivery consistency of the Firefox
releases might lead to addressed issues being prevented from a greater number of
releases, since the Firefox project rigidly adhere to a six-week release schedule despite
accumulating issues that could not be delivered (see Section 17).

Although an addressed issue usually misses the next release in the Firefox
project, issues are usually shipped faster when compared to the other projects. Indeed,
Figure 7 shows that addressed issues in the Firefox project take a median of 107 days
to be released, while it takes 166 and 146 days in the Eclipse and ArgoUML projects,
respectively.

Finding 2—34% to 60% of addressed issues had their delivery prevented from at least
one release in the traditionally released projects. Figure 6 shows that 98% of the ad-
dressed issues in the Firefox project are prevented from delivery in at least one release.
However, for the projects that adopt a more traditional release cycle, i.e., the ArgoUML
and Eclipse projects, 34% to 60% of the addressed issues are prevented from delivery
in at least one release. This result indicates that even though an issue is addressed, its
delivery may be prevented by one or more releases, which can frustrate end users.

Finding 3—Many issues that were prevented from delivery are addressed well before
the upcomingrelease date. Addressed issues could be prevented from delivery because
they were addressed late in the release cycle, e.g., one day or one week before the
upcoming release date. To check whether addressed issues are being prevented from
delivery mostly because they are being addressed late in the release cycle, we compute
the fix timing metric.

Figure 9 shows the distribution of the fix timing metric for each project. The
smallest fix timing median is observed for the Eclipse project, which is 0.45. For the
ArgoUML and Firefox projects, the median is 0.52 and 0.53, respectively. The fix timing
medians are roughly in the middle of the release. Moreover, the boxes extend to cover
between 0.25 and 0.75. The result suggests that, in the studied projects, issues that
are prevented from delivery are usually addressed } to 2 of the way through a release.
Hence, it is unlikely that most addressed issues are prevented from delivery solely
because they were addressed too close to an upcoming release date.

Chapter 3. How Frequent is Delivery Delay? 39

1.00-

0.75
g 0.52 0.53
£ 0.50; 0.45
X
LL

0.25

0.00-

Argo‘UML Ecli‘pse Firefox

Figure 9 - Fix timing metric. We present the distribution of the fix timing metric for
addressed issues that are prevented from delivery in at least one release.

The delivery of 34% to 60% of the addressed issues in the traditionally released
projects and 98% in the rapidly released project were prevented from delivery in
at least one release. Furthermore, we find that many issues which delivery was
prevented, were addressed well before the releases from which they were omitted.

3.3.2 RQ2: Does the stage of the release cycle impact delivery de-
lay?

RQ2: Motivation

An issue that is addressed before the production of a release candidate may
receive more attention, which may lead to a shorter delivery delay. Analysis of the
impact of integration stage may help researchers and practitioners to reflect on how
to reduce delivery delay or to increase awareness about it.

RQ2: Approach

For each studied project, we tag addressed issues according to the stage during
which they were addressed. For example, if an issue was addressed during the beta

Chapter 3. How Frequent is Delivery Delay? 40

stage of the Firefox project (i.e., at the BETA channel), we tag such issue as being
“addressed during beta”. We then compare the distributions of delivery delay in terms
of days (Definition 2) among the different stages of a release cycle. For example, in the
Firefox project, we compare the distributions of delivery delay between the NIGHTLY,
ALPHA, and BETA stages, since the RELEASE stage corresponds to the official release
itself.

To check whether there is at least one statistically significant difference among
distributions of delivery delay, we use the Kruskal-Wallis test (KRUSKAL; WALLIS,
1952). This test checks if two or more samples are likely to come from the same pop-
ulation (null hypothesis). However, when there are three or more distributions, the
Kruskal-Wallis test does not indicate which distribution is statistically different with
respect to the others. For specific comparisons between distributions, we use the Dunn
test (DUNN, 1964). The Dunn test shows which distribution is statistically different
from the others. To counteract the problem of multiple comparisons (DUNN, 1961),
we use the Bonferroni correction to adjust our obtained p-values.

Finally, we use Cliff’s delta to check the magnitude of the observed differ-
ences (CLIFF, 1993). For example, two distributions may be statistically different, but
the magnitude of such a difference may be negligible. The higher the value of the
Cliff’s delta, the greater the magnitude of the difference between distributions. We
use the thresholds provided by Romano ef al. (ROMANO et al., 2006) to perform our
comparisons: delta < 0.147 (negligible), delta < 0.33 (small), delta < 0.474 (medium),
and delta >= 0.474 (large).

We also compute the fix timing metric (as in RQ1). However, this time we check
whether addressed issues are being prevented mostly because they were performed
near a code freeze date—rather than the upcoming release date. Equation 3.2 shows
how we adapt Equation 3.1 to compute the fix timing metric to account for the code
freeze date. For the Eclipse project, we consider the date of the last release candidate
as the code freeze stage, while we consider the date of a beta stage as the code freeze
stage in the ArgoUML project.

days that is remaining for a code freeze
release cycle duration

(3.2)

RQ2: Results

Finding 4—Issues that are addressed during more stable stages of a release cycle
have a shorter delivery delay. Figure 10 shows the distributions of delivery delay (in
terms of days) per each release cycle stage of the studied projects. For the Eclipse
project, the stages are divided into milestones, RCs (Release Candidates), and code

Chapter 3. How Frequent is Delivery Delay? 41

Table 2 - Statistical analysis. An overview of the p-values and deltas that are observed
during our statistical analyses.

Comparison Kruskal-Wallis (p) Dunn (p.adjusted) Effect-size (delta)
Milestones vs RCs 1.47 x 10752 (large) 0.63
Eclipse RCs vs Code freeze 1.87 x 107! 0.56 Not apply
Milestones vs Code freeze 0.02 (negligible) 0.09
Nightly vs Aurora 5.07 x 10~%9 (medium) 0.40
Firefox Aurora vs Beta 2.99 x 10776 1.72 x 10793 (medium) 0.40
Nightly vs Beta 1.43 x 10731 (large) 0.57
Development vs Alpha 7.24 x 1079 (large) 0.94
ArgoUML Alpha vs Beta 2.73 x 107133 3.98 x 10799 (large) 0.98
Development vs Beta 1.14 x 1078 (Iarge) 0.99

freeze (see the release engineering process of Eclipse). Indeed, issues that are addressed
during RCs have a shorter delivery delay when compared to issues that were addressed
during milestone releases. For the difference between milestones and RCs, we observe
ap = 1.47 x 10752 and a large effect-size of delta = 0.63. All of the p-values and deltas
of our statistical analysis are shown in Table 2. Even though delivery delay seems to
be larger during the code freeze stage, we do not observe a significant p-value when
comparing the code freeze stage with the RC stage. Additionally, although we obtain a
p = 0.02 when comparing the code freeze stage with the milestone stage, we obtain a
negligible effect-size (delta = 0.09), which indicates that the difference of the values
between distributions is not significant. In fact, only ten issues were addressed during
the code freeze stage in our data, which impairs statistical observations of trends in
such a stage.

For the Firefox project, we observe that delivery delay tends to be shorter as
fixes are performed along more stable stages. For example, by comparing the delivery
delay values between the NIGHTLY and AURORA stages, we observe ap = 5.1 x 104
and a medium effect-size of delta = 0.40 (the other comparisons are shown in Table 2).

Finally, for the ArgoUML project, we also observe a trend of shorter delivery de-
lay as the fixes are performed during more stable stages of release cycles. For instance,
when we compare the delivery delay of addressed issues of the alpha and beta stages,
we obtain a p-value of 3.98 x 107 and a large effect-size of delta = 0.98.

Finding 5—Many issues that are prevented from delivery are addressed well before
the code freeze stage of their respective release cycle. We compute the fix timing metric
that we present in RQ1. However, instead of counting the number of days until an
upcoming release, we count the number of days until an upcoming code freeze stage
(Equation 3.2). Our goal is to check whether addressed issues are being prevented from
delivery mostly because they are being addressed too close to a code freeze stage (i.e., a
period during which integration of new code changes would likely be minimal).

Chapter 3. How Frequent is Delivery Delay? 42

400

300

Delay in days
N
o
o

100
0
During milestones During RCs During code freeze
(a) Eclipse
300
2
S 200
2
a
1000 ————
0 \
During nightly During aurora During beta
(b) Firefox
600
400 5
2
<
a
200
0

During developmentDuring alpha During beta
(c) ArgoUML

Figure 10 - delivery delay during release cycle stages. Issues that are addressed dur-
ing more stable stages of a release cycle are likely to have a shorter delivery

delay

Chapter 3. How Frequent is Delivery Delay? 43

1.00-
0.75-
2
E 050
z 0.41
0.35
0.25-
0.00-
Eclipse ArgoUML

Figure 11 - Fix timingvalues for the code freeze period. The median fix timingvalues
drop from 0.45 and 0.52 to 0.41 and 0.35 in the Eclipse and ArgoUML projects,
respectively.

In Figure 11, we show the fix timing values for the Eclipse and ArgoUML projects,
since both projects adopt a code freeze stage. For the Eclipse project, the code freeze
starts after the last release candidate, while for the ArgoUML project, the code freeze
starts at the beginning of the beta stage (see Section 3.2.1). Naturally, we observe a drop
in the fix timing values, since both code freeze stages start considerably before the
official release dates. Nevertheless, we observe that even after correcting for the code
freeze stages of the Eclipse and ArgoUML projects, it is unlikely that addressed issues
are being prevented from delivery solely because of an approaching code freeze stage.
For instance, although the median fix timing for the ArgoUML project dropped from
0.52 to 0.35, the development team would still have 2 months to integrate an addressed
issue—since the median duration of a release cycle in the ArgoUML project is 180 days.

We observe that issues that are addressed during more stable stages of release cycles
are associated with a shorter delivery delay. We also observe that addressed issues
are unlikely to be prevented from delivery solely because they were addressed near
an upcoming code freeze stage.

Chapter 3. How Frequent is Delivery Delay? 44

3.3.3 RQ3: How well can we model the delivery delay of addressed

issues?
RQ3: Motivation

Several studies have proposed approaches to investigate the time that is re-
quired to fix an issue (ANBALAGAN; VOUK, 2009; GIGER; PINZGER; GALL, 2010; KIM;
WHITEHEAD JR., 2006; MARKS; ZOU; HASSAN, 2011; WEIB et al., 2007; ZHANG; GONG;
VERSTEEQG, 2013). These studies could help to estimate when an issue will be addressed.
However, we find that an addressed issue may be prevented from delivery before reach-
ing users. Even though most issues are addressed well before the next release date,
many of them are not delivered until a future release. For users and contributors, how-
ever, knowing the delivery delay of addressed issues is of great interest. In RQ3, we
investigate if we can accurately model delivery delay in terms of number of releases
and days (i.e., Definitions 1 and 2 of delivery delay). Our explanatory models are im-
portant to understand which attributes may impact delivery delay of addressed issues.
Moreover, such type of models could be used by practitioners to estimate when an
addressed issue will likely be delivered.

RQ3: Approach

In order to study when an addressed issue is delivered, we collect information
from both the ITSs and VCSs of the studied systems. We train models using attributes
that are grouped in the following families: reporter, resolver, issue, project, and process.

* Reporter: refers to the attributes regarding an issue reporter. Issues that are re-
ported by a reporter who is known to report important issues may receive more
attention from the integration team.

* Resolver: refers to team members that fix issues. Issues that are addressed by
experienced resolvers may be easier to integrate and ship to end users.

e Issue: refers to the attributes of issues reports. Project teams use this information
to triage, fix, and integrate issues. For example, integrators may not be able to
properly assess the importance and impact of poorly described issues, which
may increase delivery delay.

Chapter 3. How Frequent is Delivery Delay? 45

Table 3 - Reporter, Resolver and Issue families. Attributes of the Reporter, Resolver
and Issue families that are used to model the delivery delay of addressed
issues

Family Attributes Value Definition (d)|Rationale (r)
d: Experience in filing reports for the project. It is measured
by the number of previously reported issues of a reporter.
r: An issue reported by an experienced reporter might be de-
livered quickly.
d: Measured by the median integration time of prior issues
that were reported by a given reporter.
Integration Numeric r:Ifissues that are reported by a given reporter are delivered
speed quickly, future issues reported by the same reporter may also
be delivered quickly.
d: Experience in fixing issues for the project. It is measured
by the number of prior issues that were addressed by a given
Resolver fExperience Numeric resolver.
r: An issue that is addressed by an experienced resolver may
be easier to integrate.
d: Measured by the median integration time of prior ad-

Reporter Experience Numeric

dressed issues.
fIntegration Numeric r: If the prior addressed issues of a particular resolver were
speed quickly delivered, future issues that are addressed by the same

resolver may also be quickly delivered.
d: The component to which an issue is being reported.
r: Issues that are related to a given component (e.g., authenti-
Issue Component Nominal cation) might be more important, and thus, might be deliv-
ered more quickly than issues that are reported to less impor-
tant components.
d: The platform specified in the issue report.
r: Issues regarding one platform (e.g., MS Windows) might be
delivered more quickly than issues that are reported to less
important platforms.
d: The severity level that is recorded in the issue report.
r: severe issues (e.g., blocking) might be delivered faster than
Severity Nominal other issues. Panjer observed that the severity of an issue has
a large effect on its lifetime for the Eclipse project (PANJER,
2007).
d: The priority that is assigned to the issue report.
Priority Nominal r: High priority issues will likely be delivered before low prior-
ity issues.
d: We check whether the issue report has a stack trace attached
in its description.
r: A stack trace attached in the description of the issue report
may provide useful information with respect to the cause of
the issue, which may quicken the delivery of that addressed
issue (SCHROTER; BETTENBURG; PREMRAJ, 2010).
d: Description of the issue measured by the number of words
in its description.

Platform Nominal

fStack Boolean
trace
attached

Description Numeric

Size r: Issues that are well-described might be easier to integrate

than issues that are difficult to understand.

T New attributes that did not appear in our previous work (COSTA et al., 2014)

* Project: refers to the status of the project when a specific issue is addressed. If
the project team has a heavy integration workload, i.e., many addressed issues
waiting to be delivered, the delivery of newly addressed issues may be hindered.

Chapter 3. How Frequent is Delivery Delay? 46

Table 4 - Project family. Attributes of the Project family that is used to model the
delivery delay of an addressed issue.

Family Attributes Value Definition (d)|Rationale (r)
d: The number of issues in the RESOLVED-FIXED state at
a given time.
r: Having a large number of addressed issues at a given
time might create a high workload on team members,
which may affect the number of addressed issues that are
delivered.
d: jaxolheissue yvhere the rank is the position in time
at which an issue was addressed in relation to others in
the current release cycle. The rank is divided by all of the
fQueue posi- Numeric issues that were addressed until the end of the current
tion release cyle.
r: An issue that is near the front of the queue is more likely
to be quickly delivered.

Project Backlog of is- Numeric
sues

total

>~ fixingtime
d: =5 e the sum of the time (measured in terms
of days) to fix the issues of the current release cycle over
the number of resolvers that worked in that release cy-
cle (BROOKS, 1975).
r: The higher the total fixing time that is spent per resolver
in fixing issues the less the likelihood of an addressed issue
experiencing a large delivery delay.
d: The number of issues in the RESOLVERD-FIXED state
at a given time for each resolver of the development team.
"Backlog of Numeric r:Havingalarge number of addressed issues per resolver
issues per might create a workload on that resolver to integrate the
resolver issue.

fFixing time Numeric
per resolver

T New attributes that did not appear in our previous work (COSTA et al., 2014)

* Process: refers to the process of fixing an issue. An addressed issue that involved
a complex process (e.g., long comment threads, large code changes) could be
more difficult to understand and integrate.

Tables 3, 4 and 5 describe the attributes that we compute for each family. For
each attribute, Tables 3, 4 and 5 present our rationale for using it in our models. We
choose these families of attributes because (i) we intend to study a variety of perspec-
tives that might influence delivery delay and (ii) they are simple to compute using the
publicly available data sources (e.g., ITSs and VCs) from our studied systems.

We train exploratory models to study how many releases an addressed issue is
likely to be prevented from delivery (Definition 1). To study delivery delay in terms of
releases, we use the random forest classification technique (BREIMAN, 2001). Random
forest is an ensemble learning technique that operates by combining a multitude of
decision trees at the training stage. Each decision tree uses a random subset of the

Chapter 3. How Frequent is Delivery Delay? 47

Table 5 - Process family. Attributes of the Process family that is used to model the
delivery delay of an addressed issue.

Family Attributes Value Definition (d)|Rationale (r)
d: The number of files that are linked to an issue report.
r: delivery delay might be related to a high number of
Process Number of Im- Numeric impacted files because more effort would be required to

pacted Files properly integrate code modifications (JIANG; ADAMS;

GERMAN, 2013).

d: An activity is an entry in the issue’s history.

r: A high number of activities might indicate that much
Number of Ac- Numeric work was necessary to fix the issue, which can impact
tivities the delivery delay of an issue. JIANG; ADAMS; GERMAN,

2013).

d: The number of comments of an issue report.

r: A large number of comments might indicate the impor-
Number of Numeric tance of an issue or the difficulty to understand it (GIGER;
Comments PINZGER; GALL, 2010), which might impact delivery de-

lay JTANG; ADAMS; GERMAN, 2013).

d: The number of times that the issue’s assignee has

changed.

r: The number of changes in the issue assignee might indi-

cate a complex issue to fix or a difficulty in understanding
Number of Numeric such anissue, which can impact delivery delay. One of the
Tosses reasons for changing the assigned developer is because ad-

ditional expertise may be required to fix an issue (JIANG;

ADAMS; GERMAN, 2013; JEONG; KIM; ZIMMERMANN,

2009).

d: The sum of all of the time intervals between comments

(measured in hours) divided by the total number of com-

ments.

r: A short comment time interval indicates that an active

Comment In- Numeric

terval discussion took place, which suggests that the issue is
important. JIANG; ADAMS; GERMAN, 2013).
d: The sum of the added lines and removed lines in the
code repository.

Churn Numeric T A higher churn suggests that a great amount of work

was required to fix the issue, and hence, verifying the im-
pact of integrating the modifications may also be difficult
(NAGAPPAN; BALL, 2005; JIANG; ADAMS; GERMAN, 2013).
d: The number of days between the moment at which
an issue is opened the moment at which the issue is ad-
dressed (i.e., the issue reaches the RESOLVED-FIXED sta-
TFixing time Numeric tus) (GIGER; PINZGER; GALL, 2010).

r: Issues that are addressed quickly might indicate that
the necessary code changes are easy to integrate, wich
may quicken delivery delay.

t New attributes that did not appear in our previous work (COSTA et al., 2014)

attributes that are used to explain one phenomenon (e.g., delivery delay). Next, each
decision tree votes for the response bucket (e.g., next or after-1release(s)) of a given
instance. The majority of the votes for a given bucket will be the actual response of
the random forest. We choose random forests because they are known to have a good
overall accuracy and to be robust to outliers as well as noisy data. Model robustness is
important for our study because the data in the ITSs tend to be noisy (HERRAIZ et al.,

Chapter 3. How Frequent is Delivery Delay? 48

2008). In our study, we use the random forest implementation provided by the bigrf R
package.?

Since our data has a temporal order, i.e., the values of the attributes for each
instance depends on the time at which the issue was addressed, we evaluate our models
by adapting the Leave One Out Cross Validation (LOOCV) technique. In our LOOCV
variation, we first sort the data by the date at which the issues were addressed. Then,
we train models to predict each next instance of the data. For example, if issue A is
addressed before issue B, we train a model using A and test it using B. Furthermore,
ifissues A and B are addressed before C, we train a model using A and B and test it
using C. This process is repeated until we test a model by using the last addressed
issue in our data.

We evaluate the performance of our random forest models using the precision,
recall, F-measure, and AUC. We also use Zero-R models as a baseline to compare the
results of our models, since no prior models have been proposed to model delivery
delay. We describe each one below.

Precision (P) measures the correctness of our models in estimating the number
of releases that are necessary to ship an addressed issue. An estimation is considered
correct if the estimated delivery delay is the same as the actual delivery delay of an
addressed issue. Precision is computed as the proportion of correctly estimated delivery
delay for each studied delivery delay bucket (e.g., next, after-1).

Recall (R) measures the completeness of a model. A model is considered com-
plete if all of the addressed issues that were delivered in a given release r are estimated
to appear in r. Recall is computed as the proportion of issues that actually appear in a
release r that were correctly estimated as such.

F-measure (F) is the harmonic mean of precision and recall, (i.e., Z55). F-
measure combines the inversely related precision and recall values into a single de-

scriptive statistic.

Area Under the Curve (AUC) is used to evaluate the degree of discrimination
achieved by the model (HANLEY; MCNEIL, 1982). For instance, AUC can be used
to evaluate how well our models can distinguish between addressed issues that are
prevented from delivery into one or two releases. The AUC is the area below the curve
plotting the true positive rate against false positive rate. The value of AUC ranges
between 0 (worst) and 1 (best). An area greater than 0.5 indicates that the explanatory
model outperforms a random predictor. We computed the AUC value for a given bucket
b (e.g., next) on a binary basis. In other words, the probabilities of the instances were
analyzed as pertaining to a given bucket b or not. For example, when computing the

% Bigrf package <https://cran.r-project.org/src/contrib/Archive/bigrf/>

https://cran.r-project.org/src/contrib/Archive/bigrf/

Chapter 3. How Frequent is Delivery Delay? 49
1. Estimate
degrees of
freedom
6.1. Model
stability
Delay in 2. Normality assessment
—1{ number of .
- davs adjustment :
L 5. Allocate 6. Fit
degreesof [regression
—_— freedom model
|__,| Explanatory 3. Correlation
variables analysis 6.2. Estimate
~— explanatory
power
4. Redundancy
analysis

Figure 12 - Training regression models. We follow the guidelines that are provided by
Harrell Jr. (HARRELL, 2001) to train regression models, which involves nine
activities, from data collection to model validation. The results of Steps 6.2
and is presented in RQ4.

AUC value for the next bucket, the AUC value is computed by verifying if an instance
belongs to the next bucket or not. This process is repeated for each bucket. Therefore,
each bucket has its own AUC value.

Zero-R models are naive models that always select the bucket with the highest
number of instances. For example, a Zero-R model trained with the Firefox project
data would always select after-2 as the response for each instance.

We also study the delivery delay in terms of number of days (Definition 2). We
train linear regression models (using the ordinary least squares technique (OLKIN,
2002)) to study delivery delay in terms of days. Linear regression is an approach for
modeling relationships between a dependent variable y and one or more explanatory
variables x. When a single explanatory variable is used, the approach is called simple
linear regression, whereas when several explanatory variables are used, the approach
is called multiple linear regression (FREEDMAN, 2009). Regression models fit a curve
of the form y = 5y + 51 X1 + 52 X5 + ... + 8, X,.. The y variable is the response variable
(i.e., delivery delay in terms of days in our case), while the set of X variables represent
explanatory variables that may share a relationship with y. The set of 3 coefficients
represent weights given by the model to adjust the values of X to better estimate the
response y. The set of explanatory variables that we use in our study are the attributes
that are outlined in Tables 3, 4 and 5.

We use the guidelines that are provided by Harrell Jr. (HARRELL, 2001) to fit our
regression models. Figure 12 provides an overview of our model fitting approach. In
Step 1, we compute the budget of degrees of freedom that our data can accommodate

Chapter 3. How Frequent is Delivery Delay? 50

while keeping the risk of overfitting low. We compute this budget by using the formula
15 (where n is the number of issues in our dataset). In Step 2, we verify the normality
assumption of ordinary least squares, i.e., it assumes that the response variable y should
follow normal distribution. Through analysis of the delivery delay values (i.e., the y
variable), we find that it does not follow a normal distribution, and hence, we apply a
log transformation [In(y + 1)] to mitigate such skewness.

In Step 3, we use a variable clustering analysis (SARLE, 1990) to remove highly
correlated variables. For variables within a cluster that have a correlation of |p| > 0.7,
we choose only one of them to include in our models—we choose the variable with
the least skewed distribution and that we suspect that shares a stronger relationship
with delivery delay. In Step 4, we check the redundancy of the surviving explanatory
variables. Redundant variables do not add explanatory power to the models and can
distort the relationship between explanatory and response variables. To remove redun-
dant variables we use the redun function from the rms R package, which fits models
to explain each explanatory variable using the other explanatory variables. We then
discard those explanatory variables that could be estimated with an R? > 0.9 (the
default threshold of the redun function).

In the following step (Step 5), we identify which explanatory variables may
benefit from a relaxation of the linear relationship with the response variable. To
identify such variables, we calculate the Spearman multiple p*> between the response
and explanatory variables. We spend more of our budgeted degrees of freedom on the
explanatory variables that obtain the higher p* values.

In Step 6, we fit our regression models. In order to assess the fit of our models
(Step 6.1) we use the R? metric. The R? measures the “variability explained” of the
dependent variable that is analyzed (STEEL; JAMES, 1960). For instance, a R* of 0.4
indicates that 40% of the variability of the dependent variable is being modeled (“ex-
plained”) by the explanatory variables—the remaining 60% of the variability may be
due to external factors that are not being modeled or cannot be controlled.

We also use the Mean Absolute Error (MAE) to verify how close are the estimates
of our models () to the actual observations (y). Then, we assess the stability of our
models by using the bootstrap-calculated optimism of the R?. The bootstrap-calculated
optimism is computed by fitting models using bootstrap samples of the original data.
For each model fit to a bootstrap sample, we subtract the R? of such a model from
the model fit to the original data. This difference is a measure of the optimism in
the original model. In this work, we obtain the bootstrap-calculated optimism by
computing the average optimism obtained using 1,000 bootstrap samples. The smaller
the bootstrap-calculated optimism the more stable are our models (EFRON, 1986).

Chapter 3. How Frequent is Delivery Delay? 51

Table 6 - The precision, recall, F-measure, and AUC values that are obtained for the
Eclipse, Firefox, and ArgoUML projects.

Eclipse
Bucket Precision Recall F-measure AUC
Next 0.95 0.71 0.81 0.84
After-1 0.75 0.89 0.81 0.88
After-2 0.82 0.95 0.88 0.94
After-3-or-more 0.80 0.98 0.88 0.98
Firefox
Bucket Precision Recall F-measure AUC
Next 0.99 0.26 0.41 0.63
After-1 0.74 0.17 0.28 0.58
After-2 0.92 0.99 0.96 0.61
After-3-or-more 0.81 0.32 0.45 0.66
ArgoUML
Bucket Precision Recall F-measure AUC
Next 0.96 0.98 0.97 0.93
After-1 0.89 0.87 0.88 0.92
After-2 0.67 0.31 0.42 0.65
After-3-or-more 0.88 0.89 0.88 0.94

RQ3: Results for delivery delay in terms of releases

Finding 6—Our explanatory models obtain a median precision of 0.81 to 0.88 and a
median recall of 0.29 to 0.92. Figure 13 shows the precision, recall, F-measure, and
AUC of our explanatory models. The bar charts show the values that we observe for
each bucket. The values of precision, recall, F-measure, and AUC are also shown in
Table 6.

The best precision/recall values that we obtain for the Eclipse, Firefox, and
ArgoUML projects are related to the after-2 (F-measure of 0.88), after-2 (F-measure
of 0.96), and next (F-measure of 0.97), respectively. However, for buckets with low
number of instances, precision/recall values decrease considerably. For instance, the
F-measures that are obtained by our models for the Firefox project are considerably
low for the next, after-1, and after-3-or-more buckets (0.41, 0.28 and 0.45, respectively).

Moreover, our models obtain median AUCs between 0.62 to 0.96, which indicate
that our model estimations are better than random guessing (AUC of 0.5). Summarizing
the results, our models obtain a median precision of 0.81-0.88 (median) and a median
recall of 0.29-0.92. Our models provide a sound starting point for studying the release
into which an addressed issue will be delivered.

Finding 7—OQOur models obtain better F-measure values than Zero-R. We compared
our models to Zero-R models as a baseline. For all test instances, Zero-R selects the
bucket that contains the majority of the instances. Hence, the recall for the bucket

Chapter 3. How Frequent is Delivery Delay? 52

Next After—1FAfter—2BAfter—3—or—-more
1.00-

0.75
0.50-
0.25
0.00-

Precision Recall F-measure
(a) Eclipse

Next After—1FAfter—2BAfter—3—or—-more
1.00-

0.75-
0.50-
0.25-
0.00-
Precision Recall F-measure
(b) Firefox
Next After—11After—2BAfter—-3—or-more
1.00-
0.75-
0.50-
0.25-
0.00-
Precision Recall F-measure

(c) ArgoUML

Figure 13 - Performance of random forest models. We show the values of Precision,
Recall, F-measure, and AUC that are computed using the LOOCV technique.

Chapter 3. How Frequent is Delivery Delay? 53

Table 7 - Regression results of model fit. Our explanatory models obtain R? values
between 0.39 to 0.65 and MAE values between 7.8 to 66 days.

Metric/Project Eclipse Firefox ArgoUML
R? 0.48 0.39 0.65
MAE (days) 61 7.8 66
Release cycle duration (median in days) 112 42 180
Error ratio (£472) 0.54 0.18 0.37
Optimism 0.0267 0.0162 0.0035

containing the majority of instances is 1.0. We compared the F-measure of our models
to the F-measure of Zero-R models. We choose to compare to the F-measure values
because precision and recall are very skewed for Zero-R.

For the Firefox project, Zero-R obtains an F-measure of 0.95 for the after-2
bucket, whereas our model obtains an F-measure of 0.96 for the same bucket. For the
Eclipse project, Zero-R always selects next and obtains a F-measure of 0.58, while our
model obtains an F-measure of 0.81. Finally, for the ArgoUML project, Zero-R always
selects next with an F-measure of 0.84, whereas our model obtains an F-measure of
0.97. These results show that our models yield better F-measure values than naive
techniques like Zero-R or random guessing (AUC = 0.5) in the majority of cases.

We are able to accurately model how many releases an addressed issue is likely to be
prevented from delivery. Our models outperform naive techniques, such as Zero-R
and random guessing, obtaining AUC values of 0.62 to 0.96.

RQ3: Results for delivery delay in terms of days

Finding 8—Our explanatory models obtain R’ values of 0.39-0.65 and MAE values
between 7.8 to 67 days. Our models obtain fair R* values to model the variability of
delivery delay in days in the studied projects. Table 7 shows the R? and MAE values
that are obtained by each of our regression models. The R? values for the Eclipse,
Firefox, and ArgoUML projects are of 0.39, 0.48, and 0.65, respectively. Additionally, our
regression models can provide fair estimations of delivery delay in days, specially for
the Firefox project. For instance, the median interval in days between releases of the
Firefox project is 42 days (see Figure 8), while the MAE value for the Firefox project is
7.8 days, which equates to an error ratio of 18% (see Table 7).

Finding 9—Our explanatory models obtain a good stability with bootstrap calcu-
lated optimism between 0.0035 to 0.0267 of the R* values. We also observe that our

Chapter 3. How Frequent is Delivery Delay? 54

regression models are stable. Table 7 shows the bootstrap-calculated optimism of the
R? values of our models. The optimism for the Eclipse, Firefox and ArgoUML projects
are 0.0267, 0.0162, and 0.0035, respectively. Such results indicate that our explanatory
models are unlikely to be overfitted to our data and that our models are stable enough
for us to perform the statistical inferences that follow.

We are able to accurately estimate the delivery delay in terms of number of days.
Our models obtain fair R* values of 0.39 to 0.65. Our exploratory models are quite

stable with a maximum optimism of 0.0267.

3.3.4 RQ4: What are the most influential attributes for modeling
delivery delay?

RQ4: Motivation

In RQ3, we found that our models can accurately model the delivery delay of
addressed issues. To fit our models, we use attributes that we collect from ITSs and
VCSs. As described in Tables 3, 4 and 5, the attributes belong to different families that
are related to addressed issues. In RQ4, we investigate which attributes are influential
to estimate the delivery delay of addressed issues. We present the approaches and
results of RQ4 for each studied type of delivery delay (Definitions 1 and 2).

RQ4: Approach

To identify the most influential attributes for estimating the delivery delay in
terms of releases (Definition 1), we compute the variable importance score for each
attribute of our models. The variable importance implementation that we use in our
study is available within the bigrf R package. This implementation computes the
importance score based on Out Of the Bag (OOB) estimates. Each attribute of the
dataset is randomly permuted in the OOB data. Then, the average « of the differences
between the votes for the correct bucket in the permuted OOB and the original OOB is
computed. The result of « is the importance of an attribute.

The final output of the variable importance is a rank of the attributes indicating
their importance for the model. Hence, if a specific attribute has the highest rank, then it
is the most influential attribute that our explanatory model is using to estimate delivery
delay. Finally, we use the models with the largest training corpus when performing the
LOOCYV to compute the variable importance scores.

Chapter 3. How Frequent is Delivery Delay? 55

We perform Step 6.2 of Figure 12 to identify the most influential attributes in our
models that we fit to study the delivery delay in terms of number of days (Definition 2).
We evaluate the explanatory power of each attribute by using the Wald x? maximum
likelihood test (Step 6.2). The larger the x? value, the greater the power that a particular
attribute has to model the variability of delivery delay in terms of days. To do so, we
use the anova function of the rms R package.

RQ4: Results for delivery delay in terms of releases

Finding 10—The fixing time per resolver and integration workload attributes are the
most influential attributes in our models. Figure 14 shows the variable importance
values of the LOOCV of our models. The most influential attribute is the fixing time per
resolver. The fixing time per resolver attribute measures the total time that is spent by
each resolver on fixing issues in a release cycle. The second most influential attributes
are integration workload attributes (i.e., backlog of issues and backlog of issues per
resolver). These integration workload attributes measure the competition of issues
that were addressed but not yet delivered through an official release.

Our results suggest that the time that is invested by the resolvers on fixing issues
have a strong association with delivery delay. This could be due to resolvers fixing
issues more carefully—which would lead to a smoother delivery of such issues—or
issues that were less complex in overall (e.g., a shorter time was invested), which might
simplify the delivery process. A deeper analysis of this attribute would be necessary
to better understand the exact reasons behind this relationship (e.g., consulting the
development team through surveys and interviews).

We also observe that integration workload attributes (i.e., backlog of issues
and backlog of issues per resolver) are the second most influential attributes in the
three studied projects. This finding suggests that the integration backlog introduces
overhead that may lead to longer delivery delay.

Furthermore, we study the distribution of addressed issues across components
in the Firefox project. Figure 15 shows the top seven components of the Firefox project,
each having more than 400 addressed issues. We analyze the proportion of addressed
issues where delivery was prevented in the top seven components. Figure 15 shows
that, for buckets next and after-1, the majority of issues are related to the General
component, whereas for after-2 and after-3-or-more the majority are related to the
Javascript engine component. Addressed issues related to the General component may
be easy to integrate, whereas issues related to the Javascript Engine may require more
careful analysis before delivery.

56

Chapter 3. How Frequent is Delivery Delay?

(a) Eclipse
(b) Firefox

Issue ProcesslProjectiReporterlResolver
(c) ArgoUML

Issue ProcesslProjectiReporterlResolver
Issue ProcesslProjectiReporterlResolver

0.15
0.10-
0.05
0.00-

Figure 14 - Variable importance scores. We show the importance scores that are com-

puted for the LOOCYV of our models.

Chapter 3. How Frequent is Delivery Delay? 57

Total number of issues.

1,842 1,448 924 876 494 449 434

52.27 next

79.09 after1

Proportions

after2

>=3

Figure 15 - The spread of issues among the Firefox components. The darker the col-
ors, the smaller the proportion of issues that impact that component.

Finding 11—Severity and priority have little influence on delivery delay in terms of
releases. Users and contributors of software projects can denote the importance of an
issue using the priority and severity fields. Previous studies have shown that priority
and severity have little influence on bug fixing time (TIAN et al., 2015; HERRAIZ et al.,
2008; MOCKUS; FIELDING; HERBSLEB, 2002). For example, while an issue might be
severe or of high priority, it might be complex and would take a long time to fix.

However, in the integration context, we expect that priority and severity would
be more influential, since the issues have already been addressed. Even though priority
and severity are often left at their default values (see Section 3.2.1), one would expect
that the integrators would fast-track the integration of issues for which they care about
increasing the levels of severity or priority. For instance, according to the Eclipse project
guidelines for filing issue reports, a priority level of P1 is used for serious issues and
specifies that the existence of a P1 issue should prevent a release from shipping.?’
Hence, it is surprising that priority and severity play such a small role in determining
the release in which an addressed issue will appear. Indeed, Figure 14 shows that the
priority and severity metrics obtain low importance scores.

Figure 16 shows the percentage of issues with a given priority (y-axis) in a given
delivery delay bucket (x-axis). The delivery of 36% to 97% of priority P1 addressed
issues had their delivery prevented in at least one release, whereas the delivery of 32%
to 96% of priority P2 addressed issues were prevented from delivery in at least one
release.

In the ArgoUML project, while the majority of priority P1 issues (64%) were
delivered in the next release, 36% of them had their delivery prevented in at least one

27 <http://wiki.eclipse.org/Development_Resources/HOWTO/Bugzilla_Use>

http://wiki.eclipse.org/Development_Resources/HOWTO/Bugzilla_Use

Chapter 3. How Frequent is Delivery Delay? 58

7.89
5.12
9.51
8.37
6.67

64.32 P1 42.8
67.59 P2
75.79 P3
46.6238.3 P4 42.8

51.2835.0 P5 100 7.89
A A $
(\e"l\ ar(@ﬂ ag\e‘q’ 7//{5 (\eﬂ:\ a;(\e‘ 9{66{2/ 7//{5 (\e“*\ ar«e‘ QQ\G{L 7//%
(a) ArgoUML Priority (b) Eclipse Priority (c) Firefox Priority

3.58
6.63
8.59
9.37
5.18
5.83

51.2221.9526.8
38.7924.1428.4
47.5823.7921.9
37.930.74 23
39.8434.1
34.1543.9

block.
rit.
ma;j.
norm.
min.
triv.

25.8936.\5527.92 \ 4_74:4 enh.
(\e‘ﬁ\ ag\e‘ a(@‘rz’ S22 (\e‘ﬁ\ ‘ag@‘ ‘a(\e‘ S22
(d) Eclipse Severity (e) Firefox Severity

Figure 16 - The percentage of priority and severity levels in each studied bucket
of delivery delay. We expect to see light colour in the upper left corner
of these graphs, indicating that high priority/severity issues are delivered
quickly. Surprisingly, we are not seeing such a pattern in our datasets.

release. For the Firefox project, 97% of the P1 issues and 96% of the blocker issues
were prevented from delivery in at least one release. Finally, for the Eclipse project,
57% of P1 issues and 49% of blocker issues had their delivery prevented in at least
one release. Hence, our data shows that, in the context of issue delivery, the priority
and severity values that are recorded in the ITSs have little influence on delivery delay.
Instead, addressed issues might be prioritized by the level of risk that are associated
to them.?® This might explain why the time that is invested on fixing issues during a
release cycle reduces delivery delay—a risk of an addressed issue breaking the code
would be smaller when more time is invested at fixing activities.

The total time that is invested in fixing issues of a release cycle and integration
workload attributes are the most influential attributes in our models. We also find
that priority and severity have little influence in estimating delivery delay.

2 Two issues from our sample were promoted to stabler release channels due to low associated risk

<https://bugzilla.mozilla.org/show_bug.cgi?id=724145> and <https://bugzilla.mozilla.org/show_
bug.cgi?id=732962>, while another issue was prevented from delivery due to code break <https:
/ /bugzilla.mozilla.org/show_bug.cgi?id=723793>.

https://bugzilla.mozilla.org/show_bug.cgi?id=724145
https://bugzilla.mozilla.org/show_bug.cgi?id=732962
https://bugzilla.mozilla.org/show_bug.cgi?id=732962
https://bugzilla.mozilla.org/show_bug.cgi?id=723793
https://bugzilla.mozilla.org/show_bug.cgi?id=723793

Chapter 3. How Frequent is Delivery Delay? 59

Table 8 - Explanatory power of attributes. We present the x? proportion and the
degrees of freedom that are spent for each attribute. The x? of the two most
influential attributes of each model are in bold.

Eclipse Firefox ArgoUML

Wald 2 1,180 8,560 2,803
Budgeted Degrees of Freedom 87 879 102
Degrees of Freedom Spent 24 33 28
Reporter experience D.E ! L !
p p X2 4*** ~0 1**
Resolver experience DéF' ! ! L
X 12%** ~ 0" ~0
. . D.E 3 1 2
Reporter integration speed X2 167 ~0 1*
. . D.E 2 1 4
Resolver integration speed X2 o ~0 g+
. D.E 2 1
Fixing time 2 1 @ 1%
. D.E 6 6

Severity 2 ~0 g S]
.. D.E 5 5
Priority e %) g 1*
Description size D.E 1 L L
p X2 ~0 ~ ~0
D.E 1 1 1

I fil ;
mpacted files o ~0 ~ 0" ~
D.E 1 1 1
Number of comments o e e ~0
Reassignments DQF 1 1 !
X ~0 ~ 1*
o D.E 1 1 1
Number of activities X2 ~0 ~0 ~0
Interval between comments EéF' 11 N é @
D.E 1 1 1
Churn X2 ~ ~0 1
Number of concurrent issues EQF' @ 8**3 (%)
Number of concurrent issues per resolver)I?QF 7**1 2**% 9**3
Queue position D.E 1 4 2
Fixing time per resolver D.E 1 2 4
XQ 7*** ~ 0** 8***

@ Discarded during correlation analysis

@ Discarded during redundancy analysis

© The variable does not apply to the dataset
*p<0.05

**p<0.01

***p < 0.001

RQ4: Results for delivery delay in terms of days

Finding 12—Project family attributes, such as the backlog of issues and queue posi-
tion provide most of the explanatory power of our models. Table 8 shows the explana-
tory power of each of the attributes of our models. The two most influential attributes
for each model are shown in bold. Queue position, i.e., the time at which an issue is
addressed is the most influential attribute in all of the models that are fitted to our
studied projects. Interestingly, we observe that resolver integration speed—the median

Chapter 3. How Frequent is Delivery Delay? 60

delivery delay of the previously resolved issues of a particular resolver—plays an influ-
ential role in our models that are fit for the Eclipse and ArgoUML projects. Moreover,
we also observe that integration workload attributes (i.e., backlog of issues, and backlog
of issues per resolver) are very influential in our models that are fit for the Firefox and
ArgoUML projects.

Finding 13—The component to which an issue is addressed has little impact in the
delivery delay in terms of days. To demonstrate this, we group each addressed issue
according to the components that such an issue modifies. We use components that
have at least 100 addressed issues as a threshold for our analysis. We then compare the
distribution of delivery delay in terms of days in these components. Figure 17 shows
the distributions of delivery delay in terms of days per component. We do not observe
a considerable difference between distributions of delivery delay in the ArgoUML or
Firefox projects. The distribution of the “Other” component in the ArgoUML project
is more skewed, which is suggestive of its generic role—such a component may en-
compass a more broad spectrum of addressed issues. On the other hand, 99% of the
addressed issues in the Eclipse (JDT) project belong to the “Core” component (thus
its skewness). Finally, the “Debug” and “Text” Eclipse components contain only one
addressed issue each.

The workload in terms of backlog of issues awaiting integration and the integration
speed of prior addressed issues of a given resolver play a important role to model
delivery delay in terms of days. Moreover, the initial queue position is the most

important attribute in all models that we fit to study delivery delay in terms of days.

3.3.5 RQ5: How well can we identify the addressed issues that will
suffer from a prolonged delivery delay?

RQ5: Motivation

End users may get frustrated if an addressed issue that s/he is interested has
a prolonged delivery delay. Furthermore, if such a delivery delay is unexpected for a
particular system (e.g., it is very long), the frustration of users may increase consid-
erably, since they are not used to such a delivery delay. In RQ5 we investigate if we
can accurately identify which addressed issues are likely to have a prolonged delivery
delay. This investigation helps us mitigate the problem of prolonged delivery delay of
addressed issues.

61

400-

Chapter 3. How Frequent is Delivery Delay?

(c) ArgoUML

AA T -n A \A Q’
A ‘N\’\.MN
[«3]
2 g -
Qo o
= 2
Q o
‘QQQ |83 o
%0 S 3
N— N—
T ‘Q\O.U h B \E’
=) o) o) o o S S S S
) < 3 = < S s, a 3 £
sAep ul Aejaq 'skep ul awn uoneibalu| S0

sAep ul awn uonelbajul

livery delay in terms of days for each component of the studied projects.

Figure 17 - Delivery delay per component. The Figure shows the distributions of de-

Chapter 3. How Frequent is Delivery Delay? 62

Table 9 - Prolonged delivery delay thresholds. We present the median delivery delay
in terms of days, the MAD, and the prolonged delivery delay threshold for
each project.

Eclipse Firefox ArgoUML

Median delivery delay 166 107 146

Median absolute deviation 142 16 131

Prolonged delivery delay > 308 >123 > 278
RQ5: Approach

We calculate prolonged delivery delay (Definition 3) as described in the Step 3
of our data collection process. Indeed, in Figure 7, we observe that the distribution
of delivery delay of the Eclipse and ArgoUML projects have more variation than the
distribution of the Firefox project.

The hexbin plots of Figure 18 show the relationship between the delivery delay
in terms of releases and days. Hexbin plots are scatterplots that represent several data
points with hexagon-shaped bins. The lighter the shade of the hexagon, the more
data points that fall within the bin. Indeed, Figure 18 suggests that the longer the
delivery delay in terms of days, the longer is the delivery delay in terms of releases. This
tendency is more clear in the Eclipse and Firefox projects. On the other hand, in the
ArgoUML project, we observe addressed issues with a longer delivery delay in terms of
releases but with a shorter delivery delay in terms of days. For instance, we observe
addressed issues with a delivery delay of four releases that have a shorter delivery
delay in terms of days than addressed issues with a delivery delay of three releases.
Such behaviour in the ArgoUML project may be explained by the skew in the distance
between the releases of this project (cf. Figure 8).

Table 9 shows the medians and MADs for each project to identify addressed
issues that have a prolonged delivery delay. For instance, an addressed issue have a
prolonged delivery delay in the Firefox project when that issue takes more than 123 days
to be delivered. Figure 19 shows the proportion of issues that have a prolonged delivery
delay per project. We observe that 13%, 12%, and 22% of the addressed issues in the
Eclipse, Firefox, and ArgoUML projects have a prolonged delivery delay, respectively.

To train our exploratory models, we produce a dichotomous response variable
Y, where Y = 1 means that an addressed issue has a prolonged delivery delay, while
Y = 0 means that the delivery delay of that issue is normal. Finally, we train random
forest models to study whether a given addressed issue is likely to have a prolonged
delivery delay. Similar to RQ2, we evaluate our models using precision, recall, F-measure,
and AUC.

Chapter 3. How Frequent is Delivery Delay? 63

] °
400 ; 300 :
QSOO- 100 @ Py 4000
8 75 5200+ 3000
= 200 x §? &
°
100! z 100- 3 :
0-¢ 0- ;
0 1 2 3 4 0 2 4 6 8
Integration delay Integration delay
(a) Eclipse (b) Firefox
°
1500- 3
]
]
.
©1000-
E } 200
© } 100
* . ’
500- .
3 .
}
0-¢ .
0 1 2 3 4
Integration delay

(c) ArgoUML

Figure 18 - Relationship between delivery delay in terms of releases and days. We
observe that a longer delivery delay in terms of releases is associated with

a longer delivery delay in terms of days.

RQ5: Results

Finding 14—Our models obtain F-measures from 0.79 to 0.96. Table 10 shows the per-
formance of our exploratory models. Our models that we train for the Eclipse project
obtain the highest F-measure (0.96). On the other hand, our models trained for the
Firefox and ArgoUML projects obtain F-measures of 0.79 and 0.88, respectively. More-
over, our models obtain AUC values of 0.82 to 0.96. Such results suggest that our models
vastly outperform naive models, such as random guessing (AUC value of 0.50).

Finding 15—Our models obtain better F-measure values than Zero-R. For the Eclipse,
Firefox, and ArgoUML projects, Zero-R obtain median F-measures of 0.22, 0.22, and
0.36, respectively. Meanwhile, our explanatory models obtain F-measures of 0.96, 0.79,
and 0.88, respectively. Again, such results suggest that our models vastly outperform

naive classification techniques.

Chapter 3. How Frequent is Delivery Delay? 64

INormal timeBLong time

0.75

of issues

o
a
Q

portion

Pro
=
N
ol

Eclipse Firefox ArgoUML

Figure 19 - Addressed issues that have a prolonged delivery delay. We present the
proportion of addressed issues that have a prolonged delivery delay per
project. 13%, 12%, and 22% of the addressed issues of the Eclipse, Firefox,
and ArgoUML projects have a prolonged delivery delay, respectively.

Table 10 - Performance of the random forest models. The table shows the values of
Precision, Recall, F-measure, and AUC values that are computed for the

LOOCYV of our models.
Eclipse Firefox ArgoUML
Precision 0.97 0.99 0.98
Recall 0.96 0.66 0.80
F-measure 0.96 0.79 0.88
AUC 0.96 0.82 0.89

We are able to accurately identify whether an addressed issue is likely to have a long
delivery delay in a given project. Our models outperform naive techniques, such as
Zero-R and random guessing, obtaining AUC values from 0.82 to 0.96 (median).

Chapter 3. How Frequent is Delivery Delay? 65

3.3.6 RQ6: What are the most influential attributes for identifying
the issues that will suffer from a prolonged delivery delay?

RQ6: Motivation

RQ6 shows that we can accurately identify whether an addressed issue is likely
to have a prolonged delivery delay. However, it is also important to understand what
attributes are more influential when identifying addressed issues with prolonged
delivery delay, i.e., from which attributes do our models derive the most explanatory
power?

RQ6: Approach

Similar to RQ4, in this research question, we analyze our explanatory models
by computing the variable importance score of the attributes.

RQ6: Results

Finding 16—Prolonged delivery delay is most consistently associated with attributes
of the project family.

Figure 20 shows the importance scores that are computed for the LOOCV that
we use to evaluate our random forest models. We observe that the attributes that are
related to the project family are the most influential attributes in the projects. The
backlog of issues is the most influential attribute in our Eclipse models, while queue
position and fixing time per resolver are the most influential attributes in our Firefox
and ArgoUML models, respectively. In addition, we observe that attributes that are
related to workload, such as the backlog of issues and the backlog of issues per resolver
are at least the third most influential attributes in all of our models. Such results suggest
that a prolonged delivery delay is associated with project-related attributes and that the
amount of addressed issues that are to be delivered also plays a major role to identify
a prolonged delivery delay.

Our explanatory models suggest that prolonged delivery delay is more closely as-
sociated with project characteristics, such as the backlog of issues, queue position,
and fixing time per resolver. Moreover, the backlog of issues plays an influential role

in identifying a prolonged delivery delay in all of the studied projects.

66

Chapter 3. How Frequent is Delivery Delay?

(a) Eclipse
(b) Firefox

Issue ProcessliProjectiReporterIResolver
(c) ArgoUML

Issue ProcessliProjectiReporterIResolver
Issue ProcesslProjectiReporterBResolver

0.06
0.04
0.02
0.00
0.100
0.075
0.050
0.025
0.000

Figure 20 - Variable importance scores. We show the importance scores that are com-

puted for the LOOCV of our models.

Chapter 3. How Frequent is Delivery Delay? 67

3.4 Discussion

The mostimportant attributes vary as we study different types of delivery delay. While
we observe that fixing time per resolver is the most influential attribute to model deliv-
ery delay in terms of releases, the time at which an issue is addressed (queue position)
is the most influential attribute to model delivery delay in days. This difference may
be explained by what these types of delivery delay highlight. The delivery delay in
terms of releases highlights the releases from which the delivery of addressed issues
is prevented. In this context, the fixing time per resolver attribute becomes influen-
tial, since it is a measure of the amount of time that was invested by the team to fix
issues, which may lead to smoother delivery of an issue in the upcoming releases. This
smoother delivery might be either because issues were addressed more carefully or
because complex/risky issues had the necessary time to become stable enough to
avoid breakage.

On the other hand, delivery delay in terms of days highlights the total time that
is required to ship an addressed issue regardless the number of releases that are missed.
In this case, the time at which an issue is addressed in the release cycle becomes more
influential (i.e., queue position). For example, a addressed issue might be shipped faster
because it was addressed during a beta stage (see , i.e., when the collaborators have to
deal with a narrower backlog of issues so that fixes can be performed more carefully.
The increased focus due to a narrower backlog of issues may lead the addressed issue
to become easier to integrate in the next release cycle.

Moreover, in the Eclipse project, we observe that the speed at which the prior
addressed issues of a particular resolver are integrated influences the delivery delay of
new addressed issues (resolver integration speed). This result might be an indicator
that resolvers/integrators who are experienced in fixing and integrating fixes for the
project may reduce delivery delay.

As for prolonged delivery delays, we observe a similar behaviour in our models
that are fit to the ArgoUML and Eclipse projects. The fixing time per resolver attribute
and attributes that are related to the backlog of issues are the most important to iden-
tify addressed issues that have a prolonged delivery delay. On the other hand, the
queue position is the most important attribute to model prolonged delivery delay
in the Firefox project. One of the major differences between the former projects (Ar-
goUML and Eclipse) and the later one (Firefox) is the release cycle strategy that is
adopted—ArgoUML and Eclipse use a more traditional release cycle compared to the
rapid release cycles that are used in the Firefox project. Nevertheless, more empirical
analyses are necessary to investigate if there is a relationship between release cycle
strategies and prolonged delivery delay.

ch4:rq2#RQ2.)

Chapter 3. How Frequent is Delivery Delay? 68

[N
o
@

=

Concurrent issues per addressed issue

Eclilpse _Firéfox Argo'UM L
Studied systems

Figure 21 - Backlog of issues per addressed issue of the current release cycle. The
median number of concurrent fixes per addressed issue for the Eclipse,
Firefox, and ArgoUML projects are 3, 2, and 1, respectively.

The backlog of addressed issues awaiting integration may introduce an overhead
that needs to be managed by software teams. We observe that integration workload
attributes (e.g., backlog of issues and backlog of issues per resolver) are influential
in all studied types of delivery delay. This finding suggests that the overhead that
is introduced by the backlog of addressed issues that are awaiting integration may
increase the delivery delay as a whole.

3.5 Exploratory Data Analysis

3.5.1 Backlog of Issues per Addressed Issue

Since we observe that the integration workload in terms of the number of back-
log of issues is an influential attribute in all of the studied projects, we also investigate
the competition that is due to issues that are waiting for integration per addressed issue

Chapter 3. How Frequent is Delivery Delay? 69

in the release cycle. Figure 21 shows the distributions of the number of competing is-
sues for an addressed issue of a given release cycle. For each addressed issue, a median
of three, two, and one other issues are competing for integration in the Eclipse, Firefox,
and ArgoUML projects, respectively. It is interesting to note that the distribution of
the Firefox project is equivalent to the Eclipse project one, even though the Firefox
releases are more frequent. This might suggest an intense period of activity in the
Firefox release cycles (high rates of integration and fixing activity).

3.5.2 Practical Suggestions

In our study, we observe that attributes such as: fixing time per resolver, backlog
of issues, resolver integration speed, and queue position have a considerable impact on
the studied types of delivery delay. As such, we suggest that our investigated attributes
could be used as a starting point in project management tools to track the delivery delay
of addressed issues. For example, a tool that could automatically track the backlog of
issues by using the ITS, could raise warnings when the backlog for integration crosses
a project-specific threshold. Such a warning could lead to early integration sessions
before the official release deadline, and prevent log jams in the integration queue.

Our work suggests that the integration and delivery stages are also a bottleneck
that has to be managed in a software project. Tracking data and developing tools to
reduce delivery delay should also be the target of the practice and research.

3.6 Threats to Validity

3.6.1 Construct Validity

A number of tools were developed in order to extract and analyze the delivery
delay data in the studied projects. Defects in these tools could have an influence on
our results. However, we carefully tested our tools using manually-curated subsamples
of the studied projects, which produced correct results.

3.6.2 Internal Validity

The internal threats to validity are concerned with the ability to draw conclu-
sions from the relation between the explanatory and response variables.

The main threat in this regard is the representativeness of the data. Although
the Firefox and Eclipse projects report the list of addressed issues in their release notes,

Chapter 3. How Frequent is Delivery Delay? 70

we do not know how complete this list truly is. In addition, issues may be incorrectly
listed in a release note. For example, an issue that should have been listed in the release
notes for version 2.0 but only appears in the release note for version 3.0. Such human
errors may introduce noise in our datasets. To explore how correct the release notes
are, we draw a random sample of 120 Firefox addressed issues, each one listed in the
release notes of versions 17 to 27. We verify the corresponding fag that such issues
were integrated into in the BETA channel, i.e., the most stable channel of the Firefox
project that lead to the RELEASE channel.?® Indeed, 94% (1;2) addressed issues were
integrated into the corresponding tag that lead to the release for which the release
notes have listed such issues. This sample can be found on the supplemental material

web page.®

Another threat is the method that we use to map the addressed issues to releases
in the ArgoUML project. This mapping is based on the target_milestone which may be
more susceptible to human error. Nonetheless, our results obtained for the Firefox and
Eclipse projects are based on addressed issues that have been denoted in the release
notes—and that we are more confident about their delivery delay.

In addition, the way that we segment the response variable of our explanatory
models is also subject to bias. For the delivery delay in terms of releases (Definition 1),
we segment the response variable into next, after-1, after-2, and after-3-or-more. Al-
though we found it to be a reasonable classification, a different classification may yield
different results. Also, we use at least one MAD above the median as a threshold to split
the response variable of the prolonged delivery delay (Definition 3) into two categories.
A different threshold to split the response variable may yield different results.

Moreover, the attributes that we considered in our explanatory models are not
exhaustive. We choose a starting set of attribute families that can be easily computed
through publicly available data sources such as ITSs and VCSs. The addition of other
attributes would likely improve model performance. For instance, one could study
testing or code review effort that was invested on an addressed issue. Nonetheless,
our random forest models performed well compared to random guessing and Zero-R
models with the current set of attributes and response variable segmentation. With
respect to our linear regression models, we base our observations using models that
obtain 39% to 65% of variability explained. Although higher R? values are usually tar-
geted in research, we provide a sound starting point of regression models for studying
delivery delay phenomena—especially in a field that involves human intervention,
such as software engineering.

Finally, the main limitation of our statistical models (i.e., random forests and

29
30

<https://hg.mozilla.org/releases/mozilla-beta/tags>
<http://sailhome.cs.queensu.ca/replication/integration_delay/>

https://hg.mozilla.org/releases/mozilla-beta/tags
http://sailhome.cs.queensu.ca/replication/integration_delay/

Chapter 3. How Frequent is Delivery Delay? 71

linear regressions) is that we cannot claim a causal relationship between our explana-
tory variables (i.e., the studied attributes) and delivery delay. Instead, our conclusions
are based on associations that are drawn from the average behavior of our studied
projects’ data.

3.6.3 External Validity

External threats are concerned with our ability to generalize our results. In our
work, we investigated only three open source projects. Although the projects that we
considered in our study are of different sizes and domains, and prescribing to different
release policies, our findings may not generalize to other projects. Replication of this
work in a large set of projects is required in order to reach more general conclusions.

3.7 Conclusions

Once an issue is addressed, what users and code contributors care most about
is when the software is going to reflect such an addressed issue, i.e., when such an ad-
dressed issue is delivered. However, we observed that the delivery of several addressed
issues was prevented for a considerable amount of time. In this context, it is not clear
why certain addressed issues take longer to be integrated than others. We performed
an empirical study of 20,995 issues from the ArgoUML, Eclipse and Firefox projects. In
our study, we:

¢ despite being addressed well before an upcoming release, 34% to 60% of the
addressed issues are not integrated in more than one release in the ArgoUML
and Eclipse projects. Furthermore, 98% of the Firefox project issues had their
delivery delayed by at least one release.

e train random forest models to model the delivery delay of an addressed issue.
Our models obtain a median AUC values between 0.62 to 0.96. Our models out-
perform baseline random and Zero-R models.

e compute variable importance to understand which attributes are the most impor-
tant in our random forest models to study delivery delay. Heuristics that estimate
the effort that teams invest in fixing issues are the most influential in our models
to study delivery delay in terms of number of releases.

Chapter 3. How Frequent is Delivery Delay? 72

e find that, surprisingly, priority and severity have little impact on our exploratory
models for delivery delay. Indeed, 36% to 97% of priority P1 addressed issues were
delayed by at least one release.

e find that a shorter delivery delay is associated with fixes that are performed dur-
ing more controlled stages of a given release cycle.

 observe that the time at which issues are addressed and the resolvers of the issues
have great impact on estimating the delivery delay of an addressed issue. Our
explanatory models obtain R? values between 0.39 to 0.65.

e verify that our models that identify addressed issues that have a prolonged de-
livery delay outperform random guessing and Zero-R models, obtaining AUC
values of 0.82 to 0.96.

e find that the time at which an issue is addressed (queue position), the integration
workload (in terms of the backlog of addressed issues), and the heuristics that
estimate the effort that teams invest in fixing issues (fixing time per resolver), are
the most influential attributes for issues that have a prolonged delivery delay.

Our work provides insights as to why some addressed issues are integrated
prior to others. Our results suggest that characteristics of the release cycle are the ones
that have the largest impact on delivery delay. Therefore, our findings highlight the
importance of future research and tooling that can support integrators of software
projects. Itis important to improve the integration and delivery stages of a release cycle,
since the availability of an addressed issue in a release is what users and contributors
care most about.

73

4 Do Rapid Releases Reduce Delivery
Delay?

An earlier version of Study 2 appear in the pro-
ceedings of the International Conference on
Mining Software Repositories (MSR’'16) (COSTA
etal., 2016).

4.1 Introduction

Within the context of constantly evolving requirements (e.g., in agile devel-
opment), approaches like eXtreme Programming (XP) and Scrum have arisen to fos-
ter faster software delivery (BECK, 2000).%! Those methodologies claim to better em-
brace a constantly evolving requirements context by shortening release cycles. In-
deed, modern release cycles are on the order of days or weeks rather than months
or years (BASKERVILLE; PRIES-HEJE, 2004). Such rapid releasing enables faster user
feedback and a smoother roadmap for user adoption.

The allure of delivering new features faster has led many large software projects
to shift from a more traditional release cycle (e.g., 12-18 months to ship a major release),
to shorter release cycles (e.g., weeks). For example, Google Chrome, Mozilla Firefox,
and Facebook teams have each adopted shorter release cycles (ADAMS; MCINTOSH,
2016). In this chapter, we use the terms rapid releases to describe releases that are
shipped using release cycles of weeks or days, and traditional releases to describe
releases that are shipped using release cycles of months or years.

Prior research has investigated the impact of adopting rapid releases (MANTYLA
et al., 2014; SOUZA; CHAVEZ; BITTENCOURT, 2014; SOUZA; CHAVEZ; BITTENCOURT,
2015; BAYSAL; DAVIS; GODFREY, 2011; KHOMH et al., 2012). For example, Khomh et
al. (KHOMH et al., 2012) found that bugs that are related to crash reports tend to be
fixed more quickly in the rapid Firefox releases than the traditional ones. Méntyld et
al. (MANTYLA et al., 2014) found that the Firefox project’s shift from a traditional to a
rapid release cycle has been accompanied by an increase in the testing workload.

3 <http://www.scrumguides.org/>

http://www.scrumguides.org/

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 74

To the best of our knowledge, little prior research has empirically studied the
impact that a shift from a traditional to a rapid release cycle has on the speed of de-
livering addressed issues. Such an investigation is important to empirically check if
adopting a rapid release cycle really does lead to the quicker delivery of addressed
issues. In Chapter 3, we study the delay that happens before the delivery of an ad-
dressed issue. We found that 98% of the addressed issues in the rapid releases of Firefox
were prevented from delivery in at least one release. Such delayed deliveries hint that
even though rapid releases are consistently shipped every 6 weeks, they may not be
delivering addressed issues as quickly as its proponents purport.

Hence, in this chapter, we compare traditional and rapid release cycles with
respect to delivery delay. We perform a quantitative analysis of 72,114 issue reports
from the Firefox project (34,673 for traditional releases and 37,441 for rapid releases).
These issue reports refer to bugs, enhancements, and new features (ANTONIOL et al.,
2008). We address the following RQs:

* RQI: Are addressed issues delivered more quickly in rapid releases? Interest-
ingly, we find that although issues are addressed more quickly in rapid releases,
they tend to require a longer time to be delivered to users.

* RQ2: Why can traditional releases deliver addressed issues more quickly? We
find that minor-traditional releases (i.e., releases of smaller scope that are shipped
after a major version of the software) are a key reason as to why addressed issues
tend to be delivered more quickly in traditional releases. In addition, we find that
the length of the release cycles are roughly the same between traditional and
rapid releases when considering both minor and major releases, with medians
of 40 and 42 days, respectively.

* RQ3: Did the change in release strategy have an impact on the characteristics
of delayed issues? Our models suggest that issues are queued up as a project
backlog in traditional releases, while issues in rapid releases are queued up on a
per release basis (i.e., a backlog per release cycle). Issues that are addressed early
either in a project or release cycle backlog are less likely to be delayed.

Chapter Organization. The remainder of this chapter is organized as follows. In Sec-
tion 4.2, we describe the design of this study. In Section 4.3, we present the obtained
results. In Section 4.4, we analyze potential confounding factors that are related to our
results. In Section 4.5, we suggest practical guidelines based on our study. Finally, we

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 75

Step 2
Step
C II t . Com ute Step 3 Step 4
Jeas Analyze T ; Compute Perform
release tags > Mo commit ,:> .
information . metrics Li metrlcs . Stud I
3ty Release ; Commit logs | Processed
: iont linked to rel | issues dataset
.ﬁ information Inked to release | data
Release versions

notes

Figure 22 — Overview of the process to construct the dataset that is used in our Study 2.

disclose the threats to the validity of our study in Section 4.6 and we draw conclusions
in Section 4.7.

4.2 Methodology

In Study 2, we set out to comparatively analyze the delivery delay in terms of days
(see Definition 2) of addressed issues that were shipped in traditional releases versus
the ones that were shipped in rapid releases. In this section, we provide information
about the subject projects, data collection process, and how we perform the analyses
of our study.

4.2.1 Subjects

We choose to study the Firefox project because it offers a unique opportunity to
investigate the impact of shifting from a traditional release cycle to a rapid release cycle
usingrich, publicly available ITS and Version Control System (VCS) data. Although other
open source projects may have ITS and VCS data available, they do not provide the
opportunity to investigate the transition between traditional releases and rapid releases.
In addition, comparing different projects that use traditional and rapid releases poses
a great challenge, since one has to distinguish to what extent the results are due to
the release strategy and not due to intricacies of the projects themselves. Therefore,
we highlight that the choice to investigate Firefox is not accidental, but based on the
specific analysis constraints that such data satisfies, and the very unique nature of
such data.

4.2.2 Data Collection

Figure 22 shows an overview of our data collection approach. Each step of the
process is described below.

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 76

Table 11 - The studied traditional and rapid Firefox releases.

Strategy Version range Time period # of Majors # of Minors
Trad. 1.0-4.0 Sep/2004 - Mar/2012 7 104
Rapid 5-27 Jun/2011 - Sep/2014 23 50

Step I: Collect release information. We collect the date and version number of each
Firefox release (minor and major releases of each release strategy) using the Firefox
release history wiki.* Table 11 shows: (i)the range of versions of releases that we inves-
tigate, (ii) the investigated time period of each release strategy, and (iii) the number of
major and minor studied releases in each release strategy.

Step 2: Link issues to releases. Once we collect the release information, we use the tags
within the VCS to link issue IDs to releases. First, we analyze the tags that are recorded
within the VCS. Since Firefox migrated from CVS to Mercurial during release 3.5, we
collect the tags of releases 1.0 to 3.0 from CVS, while we collect the tags of releases
3.5 to 27 from Mercurial.**3 By analyzing the tags, we extract the commit logs within
each tag. The extracted commit logs are linked to their respective tags. We then parse
the commit logs to collect the issue IDs that are being addressed in the commits. We
discard the following patterns of potential issue IDs that are false positives:

1. Potential IDs that have less than five digits, since the issue IDs of the investigated
releases should have at least five digits (2,559 issues were discarded).

2. Commitlogs thatfollow the pattern: “Bug <ID> - reftest” or “Bug <ID> - JavaScript
Tests”, which refer to tests and not bug fixes (269 issues were discarded).

3. Any potential ID that is the name of a file, e.g,, “159334.js” (607 issues were dis-
carded).

We find that all of the remaining IDs match issue IDs that exist in the Firefox
ITS.

Since the commit logs are linked to VCS tags, we are also able to link the issue
IDs found within these commit logs to the releases that correspond to those tags. For
example, since we find the fix for issue 529404 in the commit log of tag 3.7al, we link
this issue ID to that release. We also merge together the data of development releases
like 3.7al into the nearest minor or major release. For example, release 3.7al would
be merged with release 4.0, since it is the next user-intended release after 3.7al. In

32 <https://en.wikipedia.org/wiki/Firefox_release_history>
3 <http://cvsbook.red-bean.com/cvsbook.html>
3 <https://mercurial.selenic.com/>

https://en.wikipedia.org/wiki/Firefox_release_history
http://cvsbook.red-bean.com/cvsbook.html
https://mercurial.selenic.com/

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 77

the case that a particular issue is found in the commit logs of multiple releases, we
consider that particular issue to pertain to the earliest release that contains the last
fix attempt (commit log), since that release is the first one to contain the complete fix
for the issue. Finally, we collect the issue report information of each remaining issue
(e.g., opening date, fix date, severity, priority, and description) using the ITS. Moreover,
since the minor-rapid releases are off-cycle releases, in which addressed issues may
skip being integrated into mozilla-central (i.e.,, NIGHTLY) tags, we manually collect
the addressed issues that were integrated into those releases using the Firefox release
notes (i.e., 247 addressed issues).*> We add the manually collected addressed issues
from ESR releases within the rapid releases data, since they also represent data from a
rapid release strategy.

Steps 3 and 4: Compute metrics and perform analyses. We use the data from Step 2
to compute the metrics that we use in our analyses. We select these metrics (which are
described in the approach for RQ3) because we suspect that they share a relationship
with delivery delay.

4.3 Results

In this study, we address three research questions about the shift from a tradi-
tional to a rapid release cycle. The motivation of each research question is detailed
below.

4.3.1 RQI: Are addressed issues delivered more quickly in rapid re-

leases?
RQI: Motivation

Since there is a lack of empirical evidence to indicate that rapid release cycles
deliver addressed issues more quickly than traditional release cycles, we compare the
delivery delay of addressed issues in traditional releases against the delivery delay in
rapid releases in RQ1.

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 78

.t . t2 .13 .
Time
New Assigned Fixed Released
Figure 23 - A simplified life cycle of an issue.
RQ1: Approach

Figure 23 shows a simplified life cycle of an issue, which includes the triaging
phase (1I), the fixing phase (72), and the integration phase (£3). We consider the last
RESOLVED-FIXED status as the moment at which a particular issue was addressed (the
fixed state in Figure 23). The lifetime of an issue is composed of all three phases (from
new to released). For RQ1, we first observe the lifetime of the issues of traditional and
rapid releases. Next, we look at the time span of the triaging, fixing, and integration
phases within the lifetime of an issue.

We use beanplots (KAMPSTRA et al., 2008) to compare the distributions of our
data. The vertical curves of beanplots summarize and compare the distributions of
different datasets (see Figure 24a). The higher the frequency of data within a particular
value, the thicker the bean is plotted at that particular value on the y axis. We also
use Mann-Whitney-Wilcoxon (MWW) tests (WILKS, 2011) and Cliff’s delta effect-size
measures (CLIFF, 1993). MWW tests are non-parametric tests of the null hypothesis that
two distributions come from the same population (o« = 0.05). On the other hand, Cliff’s
delta is a non-parametric effect-size measure to verify the difference in magnitude
of one distribution compared to another distribution. The higher the value of the
Cliff’s delta, the greater the difference of values between distributions. For instance, if
we obtain a significant p value but a small Cliff’s delta, this means that although two
distributions do not come from the same population their difference is not that large.
A positive Cliff’s delta indicates how much larger the values of the first distribution are,
while a negative Cliff’s delta indicates the inverse. Finally, we use the Median Absolute
Deviation (MAD) (HOWELL, 2005; LEYS et al., 2013) as a measure of the variation of our
distributions. The MAD is the median of the absolute deviations from one distribution’s
median. The higher the MAD, the greater is the variation of a distribution with respect
to its median.

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 79

o o
o _] o _|
B 3
o B o N
" B 7 B
g
c ! E 7
> 8+ o 3
L 0 Traditional o Traditional
O —
0 — A
o
o
(a) Lifetime (b) Triaging phase
o
o
o
n
B g |
8 | o
g 2
[© _
© ©
£ < | £ g4
%’ v Traditional %‘ Traditional
a o _
0 0w~
— -
(c) Fixing phase (d) Integration phase

Figure 24 - Time spans of the phases involved in the lifetime of an issue.

RQI: Results

Finding 17—Thereis no significant difference between traditional and rapid releases
regarding issue lifetime. Figure 24a shows the distributions of the lifetime of the issues
in traditional and rapid releases. We observe a p < 1.03e~'* but a negligible difference
between the distributions (delta = 0.03). We also observe that traditional releases have
a greater MAD (154 days) than rapid releases (29 days), which indicates that rapid re-
leases are more consistent with respect to the lifetime of the issues. Our results indicate
that the difference in the issues’ lifetime between traditional and rapid releases is not
as obvious as one might expect. We then look at the triaging, fixing, and integration
time spans to better understand the differences between traditional and rapid releases.

Finding 18—Addressed issues are triaged and fixed more quickly in rapid releases,
but tend to wait for a longer time before being delivered. Figures 24b , 24c, and 24d
show the triaging, fixing, and integration time spans, respectively. We observe that
addressed issues take a median time of 54 days to be integrated into traditional releases,
while taking 104 days (median) to be integrated into rapid releases. We observe a

% <https://www.mozilla.org/en-US/firefox/releases/>

https://www.mozilla.org/en-US/firefox/releases/

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 80

p < 2.2¢7 16 with a small effect-size (delta = —0.25).

Regarding fixing time span, an issue takes 6 days (median) to be fixed in rapid
releases, and 9 days (median) in traditional releases. These results are statistically
significant p < 2.2¢71%, but there is only a negligible difference between distributions
(delta = 0.13).

Our results complement previous research. Khomh et al. (KHOMH et al., 2012)
found that post- and pre-release bugs that are associated with crash reports are fixed
faster in rapid Firefox releases than in traditional releases. Furthermore, we observe
a significant p < 2.2¢7!6 but negligible difference (delta = 0.11) between traditional
and rapid releases regarding triaging time. The median triaging time for rapid and
traditional releases are 11 and 18 days, respectively.

When we consider both pre-integration phases together (triaging ¢1 plus fixing
t2 in Figure 23), we observe that an issue takes 11 days (median) to triage and address
in rapid releases, while it takes 19 days (median) in traditional releases. We observe a
p < 2.2¢71% with a small effect-size (delta = 0.15). Our results suggest that even though
issues have shorter pre-integration phases in rapid releases, they remain “on the shelf”
for a longer time on average.

Finally, we again observe that rapid releases are more consistent than traditional
releases in terms of fixing and delivery rate. Rapid releases achieve MADs of 9 and 17
days for fixing and delivery, respectively. The values for traditional releases are 13 and
64 days for fixing and delivery, respectively.

Although issues are triaged and fixed faster in rapid releases, they tend to take a
longer time to be integrated. However, the delivery rate of addressed issues is more

consistent in rapid releases than in traditional ones.

4.3.2 RQ2: Why can traditional releases deliver addressed issues

more quickly?
RQ2: Motivation

In RQ1, we surprisingly find that traditional releases tend to deliver addressed
issues more quickly than rapid releases. This result raises the following question: why
can a traditional release strategy, which has a longer release cycle, deliver addressed
issues more quickly than a rapid release strategy?

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 81

Major-tradition

500
|

Major-rapid) "
Minor-traditional

Winor—rapid Minor-rapid

Figure 25 - Distributions of delivery delay of addressed issues grouped by minor and
major releases.

50
|

Delay in days

Minor-traditional

-

RQ2: Approach

In RQ2, we group traditional and rapid releases into major and minor releases
and study their delivery delays. As in RQ1, we also use beanplots (KAMPSTRA et al.,
2008), MWW tests (WILKS, 2011), and Cliff’s delta effect-size measures (CLIFF, 1993) to
perform our comparisons.

RQ2: Results

Finding 19—Minor-traditional releases tend to have less delivery delay than
major/minor-rapid releases. Figure 25 shows the distributions of delivery delay
grouped by (1) major-traditional vs. minor-traditional, (2) major-traditional vs. rapid,
(3) major-rapid vs. minor-rapid, and (4) minor-traditional vs. minor-rapid. In the com-
parison of major-traditional vs. minor-traditional, we observe that minor-traditional
releases are mainly associated with shorter delivery delay. Furthermore, in the compar-
ison major-traditional vs. rapid, rapid releases deliver addressed issues more quickly

—16

than major-traditional releases on average (p < 2.2¢7'° with a medium effect-size,

i.e., delta = 0.40).

The Firefox rapid release cycle includes ESR releases (see Chapter 2) and a
few minor stabilization and security releases. These releases also deliver addressed
issues more quickly than major-rapid releases (major-rapid vs. minor-rapid) with a
p < 2.2¢71% and a large effect-size, i.e., delta = 0.92. Furthermore, we do not observe a
statistically significant difference between distributions in the comparison of minor-
traditional vs. minor-rapid (p = 0.68).

Minor-traditional releases have the lowest delivery delay (median of 25 days).
This is likely because they are more focused on a particular set of issues that, once
addressed, should be released immediately. For example, the release history documen-
tation of Firefox shows that minor releases are usually related to stability and security
issues.®

% <https://www.mozilla.org/en-US/firefox/releases/>

https://www.mozilla.org/en-US/firefox/releases/

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 82

— o 8_ o
o 0 g
o — o
Lo o
o e
H 1
o
o
O—] —
™ X N : !
— 1
_ _— ' :
Tl | :
S - _— .
— \
+ H_

I I I I
Traditional Rapid Traditional Rapid
(a) Only Major (b) Major and Minor

Figure 26 —Release frequency (in days). The outliers in figure (b) represent the major-
traditional releases.

Finding 20—When considering both minor and major releases, the time span be-
tween traditional and rapid releases are roughly the same. Since we observe that
delivery delay is shorter on average in traditional releases, we also investigate the
length of the release cycles to better understand our previous results (see Finding 19).
Figure 26a shows that, at first glance, one may speculate that rapid releases should
deliver addressed issues more quickly because releases are produced more frequently.
However, if we consider both major and minor releases—as shown in Figure 26b—we
observe that both release strategies deliver releases at roughly the same rate on average
(median of 40 and 42 days for traditional and rapid releases, respectively).

Minor-traditional releases are one of the main reasons why the traditional release
strategy can deliver addressed issues more quickly than the rapid release strategy.
Furthermore, the lengths of the release cycles are roughly the same between tradi-

tional and rapid releases when both minor and major releases are considered.

4.3.3 RQ3: Did the change in the release strategy have an impact
on the characteristics of delayed issues?

RQ3: Motivation

In RQ1 and RQ2, we study the differences between rapid and traditional releases
with respect to delivery delay. We find that although issues tend to be addressed more

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 83

Step 1: Preparing

factors Step 3: Analyzing

TN Step 2: Training models
Traditional Computing Models ((Exolanatorv))
data D.F budget P ¥

:> Model fit Power

8 Correlation check Assessment :> Step 4: Comparing

Rapid dat (relationehin) del
apld data check Relationship modets

8 = Redundancy check Direction
N —

Analysis

check \ \ J)

Figure 27 - Overview of the process that we use to build our explanatory models.

quickly in rapid releases, they tend to wait longer to be delivered. We also find that the
use of minor releases is a key reason as to why traditional releases may deliver addressed
issues more quickly. In RQ3, we investigate what are the characteristics of each release
strategy that are associated with delivery delays. This important investigation sheds
light on what may generate delivery delays in each release strategy, so that projects
are aware of the characteristics of rapid releases versus traditional releases before
choosing to adopt one of these release strategies.

RQ3: Approach

For RQ3, we build explanatory models (i.e., logistic regression models) for the
traditional and rapid releases data using the metrics that are presented in Tables 12, 13,
and 14. We model our response variable Y as Y = 1 for addressed issues that are
delayed, i.e., had their delivery prevented in at least one release(COSTA et al., 2014) and
Y = 0 otherwise. Hence, our models are intended to explain why a given addressed
issue has a delayed delivery (i.e., Y = 1).

We follow the guidelines of Harrell Jr. (HARRELL, 2001) for building explanatory
regression models. Figure 27 provides an overview of the process that we use to build
our models. First, we estimate the budget of degrees of freedom that we can spend on
our models while having a low risk of overfitting (i.e., producing a model that is too
specific to the training data to be useful when applied to other unseen data). Second,
we check for metrics that are highly correlated using Spearman rank correlation tests
(p) and we perform a redundancy analysis to remove any redundant metrics before
building our explanatory models.

We then assess the fit of our models using the ROC area and the Brier score. The
ROC area is used to evaluate the degree of discrimination that is achieved by a model.
The ROC values range between 0 (worst) and 1 (best). An area greater than 0.5 indicates
that the explanatory model outperforms naive random guessing models. The Brier

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 84

Table 12 —- Metrics that are used in our explanatory models (Reporter, Resolver, and
Issue families).

Family

Metrics

Value

Definition (d)|Rationale (r)

Reporter

Experience

Numeric

d: the number of previously delivered issues that were
reported by the reporter of a particular addressed issue.

r: The greater the experience of the reporter the higher
the quality of his/her reports and the solution to his/her
reports might be delivered more quickly (SHIHAB et al.,
2010).

Reporter in-
tegration

Numeric

d: The median in days of the previously delivered ad-
dressed issues that were reported by a particular reporter.

r: If a particular reporter usually reports issues that are
delivered quickly, his/her future reported issues might
be delivered quickly as well.

Resolver

Experience

Numeric

d: the number of previously delivered addressed issues
that were addressed by the resolver of a particular ad-
dressed issue. We consider the collaborator that changed
the status of an issue to RESOLVED-FIXED as the resolver
of that issue.

r: The greater the experience of the resolver, the
greater the likelihood that his/her code will be delivered
faster (SHIHAB et al., 2010).

Resolver in-
tegration

Numeric

d: The median in days of the previously delivered ad-
dressed issues that were addressed by a particular re-
solver.

r: If a particular resolver usually address issues that are
delivered quickly, his/her future addressed issues might
be delivered quickly as well.

Issue

Stack trace
attached

Boolean

d: We verify if the issue report has a stack trace attached
in its description.

r: A stack trace attached may provide useful information
regarding the cause of the issue, which may quicken the
delivery of the addressed issue (SCHROTER; BETTEN-
BURG; PREMRA]J, 2010).

Severity

Nominal

d: The severity level of the issue report. Issues with higher
severity levels (e.g., blocking) might be delivered faster
than other issues.

r: Panjer observed that the severity of an issue has a
large effect on its time to be addressed in the Eclipse
project (PANJER, 2007).

Priority

Nominal

d: The priority level of the issue report. Issues with higher
priority levels (e.g., P1) might be delivered faster than
other issues.

r: Higher priority issues will likely be delivered before
lower priority issues.

Description
size

Numeric

d: The number of words in the de-
scription of the issue.

r: Issues that are well described
might be more easy to integrate than
issues that are difficult to under-
stand.

score is used to evaluate the accuracy of probabilistic predictions. This score measures
the mean squared difference between the probability of delay assigned by our models
for a particular issue I and the actual outcome of / (i.e., whether I is actually delayed

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 85

Table 13 —- Metrics that are used in our explanatory models (Project family).

Family Metrics Value Definition (d)|Rationale (r)

d: A rank number that represents the moment at which
anissueis addressed compared to other addressed issues
in the backlog. For instance, in a backlog that contains
500 issues, the first addressed issue has a rank of 1, while
the last addressed issue has a rank of 500.

r: An issue with a high queue rank is a recently ad-
dressed issue. An addressed issue might be delivered
faster/slower depending of its rank.

d: A rank number that represents the moment at which
anissue is addressed compared to other addressed issues
of the same release cycle. For example, in a release cycle
that contains 300 addressed issues, the first addressed
Cycle queue Numeric issue has arank of 1, while the last one has a rank of 300.
rank r: An issue with a high cycle queue rank is a recently ad-
dressed issue compared to the others of the same release
cycle. An issue addressed close to the upcoming release
might be delivered faster.

d: ek The queue rank is divided by all the
issues that are addressed by the end of the next release.
A queue position close to 1 indicates that the issue was
addressed recently compared to others in the backlog.
r: An addressed issue might be delivered faster/slower
depending of its position.

N cycle queue rank : -
° addressed issues of the current cycle * The cy cle queueran kis di

vided by all of the addressed issues of the release cycle.
A cycle queue position close to 1 indicates that the issue
was addressed recently in the release cycle.

r: An issue addressed close to a upcoming release might
be delivered faster.

Project Queuerank Numeric

Queue posi- Numeric
tion

Cycle queue Numeric
position

or not). Hence, the lower the Brier score, the more accurate the probabilities that are
produced by a model.

Next, we assess the stability of our models by computing the optimism-reduced
ROC area and Brier score (EFRON, 1986). The optimism of each metric is computed by
selecting a bootstrap sample to fit a model with the same degrees of freedom of the
original model. The model that is trained using the bootstrap sample is applied both
on the bootstrap and original samples (ROC and Brier scores are computed for each
sample). The optimism is the difference in the ROC area and Brier score of the bootstrap
sample and original sample. This process is repeated 1,000 times and the average
optimism is computed. Finally, we obtain the optimism-reduced scores by subtracting
the average optimism from the initial ROC area and Brier score estimates (EFRON,
1986).

We evaluate the impact of each metric on the fitted models using Wald y?
maximum likelihood tests. The larger the x? value, the larger the impact that a particular
metric has on our explanatory models’ performance. We also study the relationship
that our metrics share with the likelihood of delivery delay. To do so, we plot the change

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 86

Table 14 —- Metrics that are used in our explanatory models (Process family).

Family Metrics Value Definition (d) Rationale (r)
d: The number of files that are linked to an issue report.
r: A delivery delay might be related to a high number of
Process Number of Numeric impacted files because more effort would be required
Impacted to properly integrate the modifications JIANG; ADAMS;
Files GERMAN, 2013).
d: The sum of added lines plus the sum of deleted lines
to address the issue.
r: A higher churn suggests that a great amount of work
Churn Numeric was required to address the issue, and hence, verifying
the impact of integrating the modifications may also be
difficult JIANG; ADAMS; GERMAN, 2013; NAGAPPAN;
BALL, 2005).
d: Number of days between the date when the issue
was triaged and the date that it was addressed (GIGER;
Fix time Numeric PINZGER; GALL, 2010).
r: If an issue is addressed quickly, it may have a better
chance to be delivered faster.
d: An activity is an entry in the issue’s history.
r: A high number of activities might indicate that much
Number of Numeric work was required to address the issue, which may im-
activities pact the integration and delivery of the issue (JIANG;
ADAMS; GERMAN, 2013).
d: The number of comments of an issue report.
r: A large number of comments might indicate the impor-
Number of Numeric tance of an issue or the difficulty to understand it (GIGER;
comments PINZGER; GALL, 2010), which might impact the delivery
delay JIANG; ADAMS; GERMAN, 2013).
d: The sum of the time intervals (hour) between com-
ments divided by the total number of comments of an
issue report.
r: A short interval of comments indicates that an intense
discussion took place, which suggests that the issue is
important. Hence, such an issue may be delivered faster.
d: The number of times that the assignee has changed.
r: Changes in the issue assignee might indicate that
more than one developer have worked on the issue.
Number of Numeric Such issues may be more difficult to integrate, since
tosses different expertise from different developers might be
required JEONG; KIM; ZIMMERMANN, 2009; JIANG;
ADAMS; GERMAN, 2013).

Interval of Numeric
comments

in the estimated probability of delay against the change in a given metric while holding
the other metrics constant at their median values using the Predict function of the
rms package (HARRELL, 2001).

We also plot nomograms (IASONOS et al., 2008; HARRELL, 2001) to evaluate
the impact of the metrics in our models. Nomograms are user-friendly charts that
visually represent explanatory models. For instance, Figure 29 shows the nomogram
of the model that we fit for the rapid release data. The higher the number of points
that are assigned to an explanatory metric on the x axis (e.g., 100 points are assigned
to comments in rapid releases), the larger the effect of that metric in the explanatory

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 87

model. We compare which metrics are more important in both traditional and rapid
releases in order to better understand the differences between these release strategies.

RQ3: Results

Finding 21—Our models achieve a Brier score of 0.05-0.16 and ROC areas of 0.81-
0.83. The models that we fit to traditional releases achieve a Brier score of 0.16 and
an ROC area of 0.83, while the models that we fit to the rapid release data achieve a
Brier score of 0.05 and an ROC area of 0.81. Our models outperform naive approaches
such as random guessing and ZeroR—our ZeroR models achieve ROC areas of 0.5 and
Brier scores of 0.06 and 0.45 for rapid and traditional releases, respectively. Moreover,
the bootstrap-calculated optimism is less than 0.01 for both the ROC areas and Brier
scores of our models. This result shows that our regression models are stable enough
to perform the statistical inferences that follow.

Finding 22—Traditional releases prioritize the delivery of backlog issues, while
rapid releases prioritize the delivery of issues of the current release cycle. Table 15
shows the explanatory power (x?) of each metric that we use in our models. The queue
rank metric is the most important metric in the models that we fit to the traditional
release data. Queue rank measures the moment when an issue is addressed in the
backlog of the project (see Table 13). Figure 28a shows the relationship that queue rank
shares with delivery delay. Our models reveal that the addressed issues in traditional
releases have a higher likelihood of being delayed if they are addressed later when
compared to other issues in the backlog of the project.

On the other hand, cycle queue rank is the second-most important metric in the
models that we fit to the rapid release data. Cycle queue rank is the moment when an
issue is addressed in a given release cycle. Figure 28b shows the relationship that cycle
queue rank shares with delivery delay. Our models reveal that the addressed issues in
rapid releases have a higher likelihood of being delayed if they were addressed later
than other addressed issues in the current release cycle. Interestingly, we observe that
the most important metric in our rapid release models is the number of comments.
Figure 28c shows the relationship that the number of comments shares with delivery
delay. We observe that the greater the number of comments of an addressed issue, the
greater the likelihood of delivery delay. This result corroborates the intuition that a
lengthy discussion might be indicative of a complex issue, which may be more likely
to be delayed.

Moreover, Figures 29 and 30 show the estimated effect of our metrics using
nomograms (IASONOS et al., 2008). Indeed, our nomograms reiterate the large impact

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 88

Table 15 — Overview of the regression model fits. The x? of each metric is shown as the
proportion in relation to the total x? of the model.

Traditional releases Rapid releases

of instances 34,673 37,441
Wald 2 4,964 2,705
Budgeted Degrees of Freedom 1033 149
Degrees of Freedom Spent 26 25
Reporter experience D.E ! !
p p XQ 2*** 2***
. . D.E 1 1
Reporter integration 2 g 4
Resolver Experience 13(21: 1*1** @
; . D.E 1 1
Resolver integration 2 grns 5o
L D.E 1 1
Fix time X2 e g
. D.E 6 6
SEVel'lty X2 1*** 1***
.. D.E 5 5
P
riority e e ~0
. o D.E 1 1
Size of description Z ~0 1exe
Stack trace attached D’QF' ! !
X ~0 ~0
Number of files D'QF' *1** *1**
X 1 1
Number of comments 25 %10* 311**
. D.E 1 1
Number of tossing Z ~ 0 ~0
Number of activities D'E’ *1** *1**
X 1 3
D.E
Interval of comments o @ @
Code churn 25 ; 0 %1 0
Queue position D.E ! !
p X2 17*** 2***
Queue rank D.E 1 1
D.E 1 1
Cycle queue rank 2 10"+ 9g***
. D.E
Cycle queue position 2 53] %)

© discarded during correlation analysis
@ discarded during redundancy analysis
*p < 0.05; %x p < 0.01; % x*xp < 0.001

of number of comments (100 points) and cycle queue rank (84 points) in rapid releases,
and the large impact of queue rank (100 points) in traditional releases. We also observe
that stack trace attached has a large impact on traditional releases (68 points) despite
not being a significant contributor to the fit of our models (cf. Table 15). The large
impact shown in our nomogram for stack trace attached is due to the skewness of our
data—only 5 instances within the traditional release data have the stack trace attached
set to true. Thus, stack trace attached cannot significantly contribute to the overall

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 89

0.8 - 0.95 -
oy oy
(4] (O]
S 06 - 2 090 -
o o
()] [}
°© o
e} °
S 04 - - O 0.85 =
(@) [@]
o (o]
- -
0.2 - 0.80 -
T T T T T T T T T T
0 5000 10000 0 500 1000 1500 2000 2500 3000
Queue rank (Traditional) Cycle queue rank (Rapid)
1 | | | |
0.95 L
k5
(4]
S 0.90 =
o
(2]
3
S 0.85 -
[@))
o
-
0.80 -
T T T T T
0 200 400 600

Number of comments (Rapid)

Figure 28 - The relationship between metrics and delivery delay. The blue line shows
the values of our model fit, whereas the grey area shows the 95% confidence
interval based on models fit to 1,000 bootstrap samples. The parentheses
indicate the release strategy to which the metric is related.

fit of our models.

Another key difference between traditional and rapid releases is how addressed
issues are prioritized for delivery. Traditional releases are analogous to a queue in
which the earlier an issue is addressed, the lower its likelihood of delay. On the other
hand, rapid releases are analogous to a stack of cycles, in which the earlier an issue is
addressed in the current cycle, the lower its likelihood of delay.

Issues that are addressed early in the project backlog are less likely to be delayed in
traditional releases. On the other hand, issues in rapid releases are queued up on a
per release basis, in which issues that are addressed early in the release cycle of the

current release are less likely to be delayed.

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 90

0O 10 20 30 40 50 60 70 80 90 100

Points
reporter_experience —

1600
resolver_experience e

260 20 0
reporter_integration —rrm

0 200
resolver_integration

0 50
queue_position I e I

0 03 07 1
number_of_impacted_fileS———m

0 500
churn n

0
number_of_activities T

1200 0

number_of_comments —
900

description_size

5000
number_of_tosses 6m-

1
stacktrace_attached 0)
fix_time —m

0
. minor
severity -
blocker
. P4
priority)
P2
gueue_rank

0 1000 3000 5000 7000 9000 11000 13000
cycle_queue_rank e
2800 1400 200

Total Points : y y : : . , . , : : : :
0O 20 40 60 80 100 120 140 160 180 200 220 240
Likelihood of Integration Delay

4 -2 0 2 4 6 8 10 12 14 16 18

Figure 29 - Nomogram of our explanatory models for the traditional release cycle.

4.4 Analysis of Potential Confounding Factors

In this section, we discuss if the difference of delivery delay between release
strategies could be due to confounding factors, such as the type and the size of the
addressed issues.

Finding 23—The delivery delay of addressed issues is unlikely to be related to the size
of an issue. One may suspect that the difference in delivery delay between release
strategies may be due to the size of an issue. We use the number of files, LOC, and
number of packages that were involved in the fix of an issue to measure the size of an
issue. Figure 31 shows the distributions of the metrics that measure the size of an issue.

Chapter 4. Do Rapid Releases Reduce Delivery Delay?

91

0O 10 20 30 40 50 60 70 80 90

100

Points

reporter_experience

—TTm

0 200
reporter_integration e ‘
1100 0
resolver_integration
0 50
queue_position
1 075 04
number_of_impacted_files: S—
0 2000
churn —
0
number_of_activities T ‘
650 200 50 0
number_of comments : —
100 200 400 800
description_size e —
3500 0
number_of_tosses e
1?i 0
stacktrace_attached 5
fix_time e ‘
5000 0
. major
severity
blocker
. P1 P5
priority —
P4
queue_rank
13000 10000 7000 4000 1000
cycle_queue_rank ‘ ‘ ‘ ‘ ; ; ; ‘
0 500 1000 1500 2000 2500 3000 3500
Total Points ; y " - . . : . . .
0 20 40 60 80 100 140 180 220 260

Likelihood of Integration Delay

-3 -1

Figure 30 -Nomogram of our explanatory models for the rapid release cycle.

1234567839

1000
|
le+04
|

10

of packages

1le+00
|

\
Traditional vs Rapid

(a) Files

\
Traditional vs Rapid

(b) LOC

of files (log)
|
LOC added + LOC removed

Figure 31 - Size of the addressed issues in the traditional and rapid release data.

\
Traditional vs Rapid

(c) Packages

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 92

- |
o —]
Lo
% Rapid Rapid
2 S _| Traditional Traditional
£ B
S
)
D p—
LO —]
— Blgs Enhancements

Figure 32 —We group the addressed issues into “bugs” and “enhancements” by using
the severity field. However, the difference in the delivery delay between
release strategies is unlikely to be related with the type of the issue.

We observe that the difference between distributions of LOC is statistically insignif-
icant (p = 0.86). As for the number of files and the number of packages, although we
observe significant differences (p values of 0.014 and < 2.2¢71¢, respectively), effect-
sizes are negligible (delta = —0.05 and delta = —0.07, respectively).

Finding 24—The difference between traditional and rapid releases is unlikely to be
related to the differences between enhancements and bug fixes. We also investigate if
the observed difference in the delivery delay between traditional and rapid releases is
related to the type of addressed issues. For example, rapid releases could be delivering
more enhancements, which likely require additional integration time in order to ensure
that the new content is of sufficient quality, which would impact on the time-to-delivery.
Figure 32 shows the distributions of delays among release strategies grouped by bug
fixes and enhancements. We observe no clear distinction between delivery delay and
the type of addressed issues that is being delivered.

4.5 Practical Suggestions

In this section, we outline suggestions for practitioners and researchers based
on the results of our empirical study.

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 93

Small transition. The choice of adopting a rapid release cycle is often motivated by
the allure of accelerating the delivery of addressed issues. Such a choice needs to
be carefully rethought. We observe in our empirical study that although issues
are addressed faster, they tend to wait longer to be delivered in the Firefox rapid
releases (see Finding 18). One suggestion for software organizations is to begin
the transition of release cycles in specific teams or specific products if possible.
The result of such a small transition could be compared with the current devel-
opment process to test the impact of a more rapid release cycle on the delivery
of addressed issues.

Consistency of delivering addressed issues. Our empirical study suggests that rapid
releases can improve the consistency of the time to deliver addressed issues (see
Finding 18). A more consistent delivery of addressed issues can be an advantage
for the software organization, since end users would have a better understanding
as to when issues will be addressed and delivered.

Minor releases. We observe that a large contributor to the faster delivery of addressed
issues in the Firefox traditional releases is due to minor releases (see Finding 19).
One suggestion is that more effort should be invested in accommodating minor
releases to issues that are urgent without compromising the quality of the other
releases that are being shipped.

4.6 Threats to Validity

Construct Validity. Construct threats to validity are concerned with the degree
to which our analyses are measuring what we are claiming to analyze. Tools were
developed to extract and analyze the delivery delay data in the studied projects. Defects
in these tools could have an influence on our results. However, we carefully tested our
tools using manually-curated subsamples of the studied projects, which produced
consistent results.

Internal Validity. Internal threats to validity are concerned with the ability to
draw conclusions from the relation between the independent and dependent variables.
The way that we link issue IDs to releases may not represent the total addressed issues
per release. For example, although Firefox developers record issue IDs in commit
logs, we do not know how many of the addressed issues were not recorded in the VCS.

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 9

Techniques that improve the quality of the link between issue reports and commit logs
could prove useful for future work.

In Section 4.4, we compare the delivery delay between rapid and traditional
releases by grouping the issues as bug fixes or enhancements. We use the severity field
of the issue reports to perform this grouping. We are aware that the severity field is
noisy (HERRAIZ et al., 2008; TIAN et al., 2015) (i.e., many values represent the same
level of importance). Still, the enhancement severity is one of the significantly different
values of severity according to previous research (HERRAIZ et al., 2008). We also use the
number of files, packages, and the LOC to approximate the size of an issue. Although
these are widely used metrics to measure the size of a change, we are aware that this
might not represent the true complexity of the fix of an issue.

External Validity. External threats are concerned with our ability to generalize
our results. We study Firefox releases, since the Firefox project shifted from a traditional
release cycle to a rapid release cycle. Although we control for variations using the same
studied project in different time periods, we are not able to generalize our conclusions
to other projects that adopt a traditional/rapid release cycle. In order to mitigate the
external threat, we also perform a qualitative study of the Firefox, ArgoUML, and Eclipse
projects (see Chapter 5). By adding two other projects in our qualitative analysis, and
analyzing new sources of data (our participants), we are able to gain insights from
other subjects and better understand why delivery delay occurs. Still, we cannot claim
that our results are generalizable to other software projects that are not studied in this
work. Hence, replication of this work using other projects is required in order to reach
more general conclusions.

4.7 Conclusions

In this chapter, we perform a study about the impact that rapid release cycles
have on delivery delays. In our study, we analyze a total of 72,114 issue reports of 111
traditional releases and 73 rapid releases of the Firefox project. We obtain the following
results:

¢ Although issues tend to be addressed more quickly in the rapid release cycle,
addressed issues tend to be delivered by consumer-visible releases more quickly
in the traditional release cycle. However, a rapid release cycle may improve the
consistency of the delivery rate of addressed issues (see Finding 18).

* We observe that the faster delivery of addressed issues in the traditional releases
is partly due to minor-traditional releases. One suggestion for practitioners is

Chapter 4. Do Rapid Releases Reduce Delivery Delay? 95

that more effort should be invested in accommodating minor releases to issues
that are urgent without compromising the quality of the other releases that are
being shipped (see Finding 19).

* The triaging time of issues is not significantly different among the traditional and
rapid releases (see Finding 18).

e The total time that is spent from the issue report date to its delivery is not signifi-
cantly different between traditional and rapid releases (see Finding 17).

e In traditional releases, addressed issues are less likely to be delayed if they are
addressed recently in the backlog. On the other hand, in rapid releases, addressed
issues are less likely to be delayed if they are addressed recently in the current
release cycle (see Finding 22).

This study is the first to empirically check whether rapid releases ship addressed
issues more quickly than traditional releases. Our findings suggest that there is no silver
bullet to deliver addressed issues more quickly. Instead, rapid releases may increase
the consistency of the delivery rate of addressed issues to end users.

96

5 Why do Delivery Delays Occur?

5.1 Introduction

In our prior studies (Chapter 3 and 4), we quantitatively investigate the delivery
delay of addressed issues. We perform several statistical analyses based on the data that
is publicly available on the ITSs and VCSs of our subject projects. However, to reach
deeper knowledge as to why delivery delays occur, we survey 37 participants from the
ArgoUML, Firefox, and Eclipse projects about the delivery delay of addressed issues.
We also perform follow up interviews with four participants to get deeper insights
about the responses that we receive. In Study 3, we qualitatively and quantitatively
investigate the delivery delay of addressed issues to (i) reach additional insights that
could not be possible by only performing quantitative analysis and (ii) verify whether
our participants agree with our findings from the quantitative studies. More specifically,
we address the following research questions:

* RQI: What are developers’ perceptions as to why delivery delays occur? The per-
ceived reasons for the delivery delay of addressed issues are related to decision
making, team collaboration, and risk management activities. Moreover, delivery
delay will likely lead to user/developer frustration according to our participants.

* RQ2: What are the perceived impacts of rapid releases on delivery delays? The
allure of delivering addressed issues more quickly to users is the most recurrent
motivator of switching to a rapid release cycle. Moreover, the allure of improving
the flexibility and quality of addressed issues is another advantage that are per-
ceived by our participants.

* RQ3: Do participants agree with our quantitative findings about delivery de-
lay? The dependency of addressed issues on other projects and team workload
are the main perceived explanations of our findings about delivery delay in gen-
eral. Integration rush and increased time spent on polishing addressed issues
(during rapid releases) emerge as main explanations as to why traditional releases
may achieve shorter delivery delays.

Chapter Organization. The remainder of this chapter is organized as follows. In Sec-
tion 5.2, we describe the design of our study. In Section 5.3, we present the obtained

Chapter 5. Why do Delivery Delays Occur? 97

results. In Section 5.4, we describe the limitations of our study. Finally, we draw con-
clusions in Section 5.5.

5.2 Methodology

In this study, we perform both qualitative and quantitative analyses with respect
to the delivery delay phenomena. We gather our data by surveying and interviewing the
team members (i.e., participants) of our subject projects. In this section, we describe
the subject projects and how we collect and analyze our data.

5.2.1 Subjects

We surveyed 37 participants of the Firefox, ArgoUML, and Eclipse (JDT) projects.
We naturally choose these projects, since the analyses of this study is intended to
complement our prior quantitative analyses that we performed in those projects. We
provide a brief description of each subject project below (we have already provided a
detailed description in Section 3.2.1).

ArgoUML is an open source UML modeling tool. ArgoUML provides support
for all of the UML 1.4 diagrams. At the time that we perform this study, ArgoUML was
downloaded 80,000 times worldwide.” ArgoUML uses the IssueZilla ITS to record its
issue reports.®

Eclipse is a popular Integrated Development Environment (IDE) that is famous
for its support for the Java programming language.*® We study the Java Development
Tools (JDT) project of the Eclipse Foundation.?’ The JDT project provides the Java
perspective for the Eclipse IDE, which includes a number of views, editors, wizards,
and builders.

ArgoUML and Eclipse (JDT) adopt a traditional release cycle when compared
to the Firefox project. For instance, the median duration of release cycles that we study
for the ArgoUML and Eclipse (JDT) projects are 180 and 112 days, respectively (see
Chapter 3). While we are able to study the perceived impact of adopting rapid releases
when surveying the participants of the Firefox project, we ask the participants of the
other projects to conjecture how such an impact would be (i.e., the impact on delivery
delays).

37
38
39
40

<http://argouml.tigris.org>
<http://argouml.tigris.org/project_bugs.html>
<https://eclipse.org/>
<https://projects.eclipse.org/projects/eclipse.jdt>

http://argouml.tigris.org
http://argouml.tigris.org/project_bugs.html
https://eclipse.org/
https://projects.eclipse.org/projects/eclipse.jdt

Chapter 5. Why do Delivery Delays Occur? 98

Table 16 — Survey questions (excerpt). Each horizontal line indicates a page break.

1. For how long have you been developing software? (dropdown)

2. For how long have you worked in the (Firefox/ArgoUML/Eclipse) project? (dropdown)

3. How would you describe your roles in the software development of the Firefox/ArgoUML/Eclipse
project? (e.g., developer, tester, release manager, etc.) (text box)

4. In your opinion, what motivates a development team to shift from a traditional release cycle
(e.g., arelease every 9 to 18 months) to a rapid release cycle (e.g., a release every 6 weeks)? (text box)
5. In this survey, we consider that an issue is completed when it is implemented and tested, i.e., it
is ready to be delivered. Do you remember an issue that the development team completed work
on, but was not delivered to end users through the next possible release? Can you tell us what
caused the delivery delay of this issue in your opinion? (text box)

6. In your experience, how common are the cases in which completed issues (issues that are
implemented and tested) are omitted from the next possible release?

7. Who decides when a completed issue is delivered into an official release in your team? (text box)
8. In your opinion, when is the delivery of a completed issue to the end user considered to be
delayed in your project? (text box)

9. In your opinion, is it frustrating to users when a completed issue skips one or more releases?
Why? (text box)

10. Is it frustrating for the team members when a completed issue skips one or more releases? Why?
(text box)

11. Assuming that an issue is completed today (implementation and testing are completed), what
reasons can you think of for the issue not to be delivered to end users in the next release? (text box)
12. What can team members do to avoid the delivery delay of completed issues? (text box)

13. To what extent do you agree that the characteristics listed in the table below are related to the
delivery delay of a completed issue?

- The reporter of an addressed issue, the resolver of an addressed issue, the priority level, the
severity level, number of comments, number of modified files, number of lines of code, the time at
which an issue was addressed during the release cycle. (5-point Likert scale for each option)
14-Firefox. Have you worked in both traditional and rapid release cycles of the Firefox project?
(yes/no)

15-Firefox. In your opinion, how much impact does a rapid release cycle have on the time to
deliver completed issues for end users? (text box)

16-Firefox. Did your project evaluate the shift to rapid release cycles? If so, how? (text box)
14-Others. Do you have experience working on a rapid release cycle in any other project? (yes/no)
15-Others. In your opinion, what would be the impact of shifting to a rapid release cycle (e.g., a
release every 6 weeks rather than a release every 9 to 18 months) on the delay to deliver completed
issues, in your project? (text box)

16-Others. If your project had shifted from a traditional to a rapid release cycle, how would you
evaluate if this shift benefited your project? (text box)

5.2.2 Data collection

To collect the data to perform our third study, we design a web-based survey that
was sent to 780 participants of the Firefox, Eclipse (JDT), and ArgoUML projects. Before
sending our survey to the participants of the studied projects, we sent a pilot survey
to 10 participants of two distinct brazilian software development companies. After
receiving the answers, we improved our questions to better reflect what we intended
to understand from our participants.

We sent our polished survey to 513 Firefox, 184 Eclipse (JDT), and 83 ArgoUML
participants. We gathered the participants’ e-mails from the respective developer mail-
ing list archives of each studied project. We consider e-mail addresses from messages

Chapter 5. Why do Delivery Delays Occur? 99

that were sent in the past 4 years. To encourage participation, we provided $100 Ama-
zon.com gift cards to a random subset of the respondents who answered all of the
questions of our surveys.

Our survey is based on the two major themes that are investigated in this thesis.
The first themeis about delivery delay in general, while the second theme is focused
on the impact of switching to a rapid release cycle on the delivery delay (see Figure 1).
In particular, we are interested on understanding the perceived advantages and dis-
advantages of adopting rapid releases with respect to delivery delays. In Table 16, we
highlight a subset of the questions of our survey. Each horizontal line represents a
page break in the survey. Our complete surveys are available in Appendices A, B, and C.
The first three questions collect demographic information. Questions #5-13 belong to
the general delivery delay theme, while questions #4, #14-16 belong to the impact of
switching to a rapid release cycle theme. We placed one question of the second theme
early in the survey to mitigate bias in the responses about the motivation to switch
to a rapid release cycle. Finally, questions #14-16 are different for the Firefox project,
since the other projects did not shift from a traditional to a rapid release cycle.

In total, we receive 37 responses (5% response rate), of which 25 responses
come from Firefox participants, 9 from Eclipse participants, and 3 from ArgoUML
participants. During our survey, we ask if the participant is willing to perform a follow-
up interview. In total, we perform 4 follow-up interviews (from the 8 participants that
declared to be willing to do so).

The goal of our follow-up interviews is to gather deeper insights into the re-
sponses of the participants. In particular, we intend to (i) better understand the reasons
as to why they assign a given rank to the factors that are presented in question #13, (ii)
gather more details about why do they agree or disagree with our quantitative data of
prior studies, and (iii) recover feedback when they do not answer a specific question or
do not understand it. Our interviews are semi-structured (i.e., we did not strictly follow
our script in case our interviewee provides more subjects to discuss). For the interested
reader, the invitation letter of our survey and the script that guided our interviews are
available at Appendices F and G.

5.2.3 Research Approach

Given the geographic limitations to perform in-person meetings, the author of
this thesis and co-author #1 independently conduct three sessions of open coding of
the responses to open-ended questions (one session for each RQ). In the following,
the codes that were generated are shared and merged into a new set of codes. The
co-author #2 reviews the set of codes and adds additional entries to the final set of

Chapter 5. Why do Delivery Delays Occur? 100

Table 17 - Participant range per subject project.

Project Participant range
Firefox F01-F25
Eclipse E26-E34
ArgoUML A35-A37

codes. At the end of the process, we achieve 175 unique codes. Finally, we group our
codes into higher-level conceptual themes in order to answer our RQs. The codes that
were produced during our open coding sessions as well as our participants’ responses
are publicly available online.*

When reporting the results of RQ1-RQ3, we indicate in superscript the number
of participants that mentioned a particular code that emerged during the qualitative
analysis. These numbers do not necessarily indicate the importance of a given code,
since they were coded based on the received responses rather than scored by the
participants. Also, we mention quotes from the interviews when necessary to provide
more detail about the results. Finally, Table 17 shows the IDs of the participants that
we use while reporting results.

Finally, we also perform quantitative analyses of the responses to Likert-scale
questions. First, we check if the factors that are listed in question #13 are significantly
different using the ranks (responses) that are assigned to each factor. We use a Kruskal
Wallis test (KRUSKAL; WALLIS, 1952) to check if there is a statistically significant dif-
ference between the ranks assigned to the factors. The Kruskal Wallis test is the non-
parametric equivalent of the ANOVA test (FISHER, 1925) to check if there are statistically
significant differences when comparing three or more distributions. Since Kruskal Wal-
lis does not indicate which factor has statistically different values with respect to others,
we use the Dunn test (DUNN, 1964) to perform specific comparisons. For example, the
Dunn test indicates whether the ranks that are assigned to the number of comments
metric are statistically different when compared to the ones that are assigned to the
number of modified files metric. We use the Bonferroni correction (DUNN, 1961) on the
obtained p values to account for the multiple comparisons that we perform between
each of the factors that are listed in question #13.

Additionally, we correlate the ranks that are assigned to the factors in ques-
tion #13 with the experience of the participants (question #1). To do so, we use Spear-
man rank p correlation (SPEARMAN, 1904), which is used to measure the statistical
dependence between the ranks of two variables. Finally, we also correlate the expe-
rience of the participants with the perception of the frequency of delivery delay that
happens in the studied projects (question #6).

4 <http://danielcalencar.github.io/materials.html>

http://danielcalencar.github.io/materials.html

Chapter 5. Why do Delivery Delays Occur? 101

0 years
g 4 years
510* 5 years
8 6 years
g 5 7 years
5 8 years
H* 9 years

0- y 10 or more years

ArgoUML Eclipse Firefox

Figure 33 - Software development experience of the participants.

6,

a 0 years

g 1

g, B year

2 2 years

< — 3 years

5 4 years

#27 I 5 or more years
o 1

ArgoUML Eclipse Firefox

Figure 34 - Development experience of the participants in the respective project.

5.2.4 Demographics

We present the demographics of our obtained data. Figure 33 shows the experi-
ence of the participants. We collect this data from question #1. The options range from
“0years” to “10 or more years”. We observe that 62% (22) of the participants have “10 or
more years” of software development experience. Furthermore, Figure 34 shows the
experience of the participants related to the specific project that they are representing.
We collect this data from question #2 and the options range from “0 years” to “5 or
more years”. 51% (32) of the participants have 4 or more years of experience. Moreover,
Figure 35 shows how many participants have experience in working on rapid release
cycles (question #14). We note that 57% %) of the participants have some experience
with rapid release cycles. Figure 36 shows the team roles that the participants classified
themselves as (question #3). The majority of the participants consider themselves as
“developers” and “testers”. Since one participant can occupy several roles, the numbers
that are shown in Figure 36 represent the frequency that a role was cited rather than

Chapter 5. Why do Delivery Delays Occur? 102

nts
l—\
Q

Yes
No

o

of participa

0,
ArgoUML Eclipse Firefox

Figure 35 — Experience of the participants with respect to rapid release cycles.

15 Developer

w Tester

%10* Code Reviewer

= \olunteer Contributor

ft 5 Project Manager
User
Others

O,

ArgoUML Eclipse Firefox

Figure 36 —An overview of the roles of the participants. One participant may have
more than one role.

the number of participants. Finally, we observe that the majority of the participants
perceive delivery delay as an unusual event rather than typical (see Figure 37). For
instance, 14 of the Firefox participants think that 90% of the issues are included in the
next possible release.

In our analyses to answer RQ1-RQ3, we attempt to correlate the rating of factors
that are provided in question #13 with the data that is presented in this preliminary

analysis.

5.3 Results

We present the motivation, approach and obtained results for each investigated
RQ below.

Chapter 5. Why do Delivery Delays Occur? 103

erception

100%
> 90%
> 75%
> 50%
~ 50%
< 50%
< 25%

(< 10%
0%
o b n

ArgoUML Eclipse Firefox

nts
=
Q

a

of participa

Figure 37 - Participants’ perception on how frequent is delivery delay. The data is
grouped by proportions of how many addressed issues are included in the
next possible release. This data refers to the responses to question #6.

5.3.1 RQIl: What are developers’ perceptions as to why delivery de-

lays occur?

RQI: Motivation

To the best of our knowledge, there is no prior work that qualitatively studies
delivery delay. Qualitative studies are important to detect phenomena that are difficult
to uncover quantitatively. Our goal in this RQ is to better understand why delivery
delays happen. This investigation is a starting point to reveal new ways Elitigating

delivery delays.

RQI: Results

Our findings about developers’ perceptions of the causes of delivery delay is
divided into the following themes: (i) development activities, (ii) decision making,
(iii) risk, and (iv) team collaboration. Also, we observe that (v) frustration is a main
perceived consequence of delivery delays. After discussing each theme below, we
present a quantitative analysis of the factors that can impact delivery delay using the
responses to question #13 (see our data collection process).

Finding 25—Development activities. The number of tests that should be executed was
arecurrent theme among participants. For instance, several participants stated that

Chapter 5. Why do Delivery Delays Occur? 104

additional testing"® should be executed in order to avoid delivery delay. F17 states that
the lack of “actual user testing beyond what QA can provide” can lead to delivery delay.
Additionally, according to F15, “the most common reason is that testing was incomplete”
and according to F19, delivery delay may happen because “testing has been too narrow’”.
Finally, E32voices concerns about integration testing: “No integration tests has been
done.” Such observations bring us back to a core software engineering problem of
when is testing sufficient? (BELLER; GOUSIOS; ZAIDMAN, 2015; ALGHAMDI et al.,

2016).

Other recurrent themes that emerged during our qualitative analysis are
workload™ and code review.(" For example, E30 states that “As the delayed completed
issues stack up, they are harder to integrate (the codebase is constantly changing, merge
issues might emerge).” Interestingly, our statistical models in our prior work (see
Chapter 3) indicate workload™ as a metric that shares a strong relationship with
delivery delay. As for code review,\”) the “Unavailability of the lead/reviewer/[Project
Management Committee] (PMC)” is a reason of delivery delay that is pointed out
by E26, while F08 argues that a “prompt code reviews [may] help” to avoid delivery
delays (MCINTOSH et al., 2016).

Finding 26—Decision making. Decision making refers to the activities that are
not directly related to software construction, but can influence the speed at which
software is shipped. For example, how early a codebase should be “frozen”? Which
issues should be prioritized? The timing® and prioritization® are the recurrent
themes in our survey responses. For instance, two of the participants stated that
issues can be delayed because they are addressed “too late in the release cycle” (E28) or
because they were addressed in a “long release cycle.” Also, F12’s opinion about how
to avoid delivery delay is to “test [addressed issues] early using real users (e.g., on the
pre-release channels).” Regarding prioritization,®) E28 argues that team members
should “try to complete most important things early in the release cycle” to avoid
delivery delay. Additionally, FO7 points out how re-prioritization of issues is important:
“[...] prioritizing and re-prioritizing tasks to be sure you are building things on time [...].”

Finding 27—Risk. The risk that is associated with shipping addressed issues may
generate delivery delay according to our participants. Among the risky addressed
issues, the ones that have compatibility'? concerns are the most recurrent in this
theme. For example, when asked about reasons that may lead to delivery delay,
FI12 calls attention to issues that “break third-party websites” and that can generate
“incompatibility with third-party software that users install.” Another risk that is
associated with delivery delay is stability.*) For instance, FO3 states that “when there

Chapter 5. Why do Delivery Delays Occur? 105

are regressions noticed during Aurora/Beta cycles,” an addressed issue will likely skip
the upcoming official release.

Finding 28—Collaboration with other teams. Delivery delay may also occur due to
the overhead that is introduced when collaboration'” is needed between teams. For
example, when asked to recall a delayed addressed issue, F23 answers that “sometimes,
issues that require cross-team cooperation may be delayed when the issue is differently
prioritized by each team.” The marketing® team is mentioned recurrently when
delivery delay occurs due to other teams’ collaboration. For instance, according to F2],
delivery delay “generally happens when marketing wants to make a splash.” FO8 also
corroborates F21 by stating that “product management [may] change their mind about
the desirability of a feature, or would like to time the release of the feature with certain
external events for marketing reasons.”

Finding 29—Frustration. Delivery delay may generate frustration to both users
and developers of the software. The majority of users’ frustration comes from their
expectation®) about the addressed issues. F07 makes an interesting analogy to explain
user frustration: ‘as a user, it’s like when you are waiting your suitcase in the airport
to come out on the belt. You know it has to be there, but you keep waiting.” F14 also
provides another analogy: “it’s like a gift for Christmas, but the day of Christmas is
postponed.” On the other hand, developers may get frustrated for other reasons than
users. The greatest frustration source for developers is the feeling of useless/unreleased
work.®) According to F09, when an addressed issue is delayed, a developer “feels like
[their] work is meaningless.” FO4 complements F09 by stating that “it is frustrating to
work on something and not see it shipped.”

Finding 30—The time at which an issue is addressed during a release cycle and the
issue severity are the factors that receive the highest ratings of importance. In ques-
tion #13 of our survey, we ask participants to rate the degree to which a factor is related
to delivery delay. The factors that we list are: the reporter, the resolver, the priority,
the severity, the number of comments, the number of modified files, the number of
modified LOC, and the time at which an issue was addressed during a release cycle.
The responses to question #13 are based on a 5-points-Likert scale, i.e., participants
rate factors using ranks from 1 (strongly disagree) to 5 (strongly agree).

In Figure 38, we show the frequency of each rank per factor, while we show the
average rating of each factor in Table 18. We observe that the factors that receive the
highest ranks are severity and timing. Regarding timing, this result is in agreement with
our regression models that are presented in RQ3, in which cycle queue rankis one of the

Chapter 5. Why do Delivery Delays Occur? 106

(7))
3
830 Importance
Q 1
O
220 2
5 y
c10-
g 5
3 0
} <
@ § D D @Q) .géo QQ s
S S S & § X ~ §
Q S L N S N N S
Q@ Q Q\ 2 O o o A
& & RN Y

Figure 38 - Frequency of ranks per factor.

Table 18 - Rating of factors related to delivery delay. The highest ratings are in bold.

Factor Average rating (mean)
Time at which an issue is addressed during a release cycle (timing) 4.257
Severity 4.086
Priority 3.629
Number of LOC 3.571
Resolver 3.441
Number of files 3.314
Number of comments 2.657
Reporter 2.629

most influential variables (see Finding 22). Indeed, during the interview, FO6 further
explains that if an issue that is risky is addressed in the end of a release cycle, such an
issue is likely to be delayed to the next cycle, so that it can receive additional testing.
However, the importance ranks that were assigned to the severity factor contradicts
what we observed in our statistical models (see Finding 11). During another interview,
participant F23 explains that the high importance rating that was given to the severity
factor is due to the real severity of an issue—not the severity value that is often assigned
in issue reports. In fact, the study that was conducted by Herraiz et al. hints that the
severity field of an issue report may be inaccurate (HERRAIZ et al., 2008).

On the other hand, the factors with the lowest ranks are reporter, and # of
comments. We also asked our interviewees about these lower ratings. One of our inter-
viewees explained that the reporter of an issue might influence delivery delay only in
cases in which the reporter is also a Firefox employee. In these cases, the reporter will
address the issue her/himself, which can speed up the shipping process.*? As for the #

42 We did not observe a statistically significant difference in delivery delays between issues that are
addressed by the reporters themselves and issues that are addressed by a different team member.

Chapter 5. Why do Delivery Delays Occur? 107

o

o
/\8—
L —
p —
2

o
e 5]
w—_ O
o
3+
=
=)
c O —
o -
e
e
(@)
o o _|
Y i
(@)
RS
N

H_.

Figure 39 - Distribution of number of comments normalized by the number of re-
ported issues.

Table 19 - P-values of the comparisons between factors. Values in bold are < 0.05.

Factor x Factor Reporter Resolver Priority Severity
Reporter — 1.2¢7 T 1.3¢™ 7 1lde™®
Resolver 1.2¢7 ! — 1 1.2¢7 1
Priority 1.3¢ 2 1.3¢ 2 — 48e°
Severity 1.4e° 1.2¢7! 4.7¢ 1 —
of Comments 4.8¢7 1 1.2e7 1 1l.4e~ 2 1.6¢°
of Files 1.8¢7 1 7.9¢7 1 1 6.6¢ 7
#0of LOC 3.0¢? 1 1 2.8¢7 1
Timing 8.0c " 3.2¢72 1.8e ! 1
Factor x Factor # of Comments #ofFiles #0fLOC Timing
Reporter 4.8¢ 1 1.8¢7! 3.0e > 8.de '
Resolver 1.2¢7 ! 7.9¢7 1 1 3.2¢72
Priority 1.4c~? 1 1 1.8¢™ !
Severity 1.6c° 6.6 2.8¢7 T 1
of Comments — 1.7e T 3.3¢ 2 9.6 "
of Files 1.7e 71 — 1 1.4¢~2
#0of LOC 3.3¢72 1 — 1.le !
Timing 9.6c " 1.4c~? Lle™ T —

of comments, another interviewee clarified that there are several passionate people on
bugs that can inflate the number of comments even if the issue is easy to ship. For each
reporter, we normalize the number of his/her comments by the number of his/her
reported issues. We plot the distribution of the normalized number of comments in
Figure 39. The median number of comments per reported issue is 98. Indeed, we ob-
serve reporters with a great number of comments (e.g., 500 to 10,000 comments) per
reported issue. This result suggest that the perception of our interviewee is likely to be
true.

Chapter 5. Why do Delivery Delays Occur? 108

A Kruskal Wallis test indicates that the difference in ratings between metrics are
statistically significant (p = 0.01507). Table 19 shows the Bonferroni corrected p-values
of the Dunn tests. We observe that the fiming factor has significant larger response
values than all the other factors except the severity, priority, and LOC factors (p < 0.05).

We also use Spearman’s p to correlate the rating of the factors with (i) general
experience (question #1) and (ii) project experience (question #2). The only statistically
significant correlation that we observe is between the timing factor and general
experience. We achieve a negative correlation of -0.36 (p = 0.03235). This result
suggests that less experienced participants tend to report that the time at which
an issue is addressed during a release cycle plays a more important role in delivery
delay. One of our interviewees explains this observation by stating that “when an
issue is addressed early in the release cycle, it should have more time to be tested before
integration,” which can be helpful for fixes from less experienced resolvers. Finally,
we also correlate the responses to question #6 with general and project experience.
However, no significant correlations were found.

Our survey participants report that the delivery of addressed issues may be de-
layed due to reasons that are related to the development activities, decision making,
team collaboration, or risk. Moreover, delivery delay likely lead to user/developer
frustration.

5.3.2 RQ2: What are the perceived impacts of rapid releases on de-
livery delays?

RQ2: Motivation

In this research question, we intend to complement our quantitative findings
about the comparison between traditional and rapid release cycles regarding delivery
delays. This investigation is important to gain deeper explanations as to why addressed
issues may be delivered more quickly in traditional releases. Additionally, we intend to
understand what are the reasons for the perceived success of adopting a rapid release
cycle. This is also important to help project leaders with their decision of adopting a
rapid release cycle rather than a traditional one.

Chapter 5. Why do Delivery Delays Occur? 109

RQ2: Results

In this RQ, we study the perceptions of developers about the impact of shift-
ing to a rapid release cycle with respect to delivery delays. Our findings about these
perceptions are organized along the following themes: management, delivery, and
development. We describe each theme below.

Finding 31—Management. The shift to a rapid release cycle has a considerable impact
on release cycle management.

The most recurrent theme in this respect is flexibility’® to plan the scope of
the releases that should be shipped. FOI's opinion is that rapid releases “provide a bit
more flexibility, since if an important issue pushed back a less important change and
it misses the release cycle, it’s not a huge deal with rapid releases.” FOI's observation is
supported by our finding that rapid Firefox releases tend to deliver addressed issues
more consistently (see Finding 18).

Another perceived advantage of rapid release cycles are the risk mitigation®®
and better prioritization.® With respect to risk mitigation,®) FO7 argues that in rapid
release cycles, the team is “able to identify issues sooner. It is easier to identify issues
when you have only deployed 3 new commits than 100.” As for better prioritization,®
F19 explains that rapid release cycles “probably decreases unnecessary delays of the
releases because deadline is closer and developers have to react faster for the pressuring
issues. Non-critical issues gets also pushed back and don’t receive useless attention nor
create delays.” Still on the better prioritization® matter, FI7 adds that rapid releases
“provide a time box in which [the team] must forecast the top priority work to complete
within that time frame.”

Finding 32—Delivery. The most recurrent perceived advantage of rapid release cycles
is the “faster delivery”® of new functionalities. When asked about the motivation
to use rapid release cycles, FO5 mentions “increasing speed of getting new features to
users,”while FO6 mentions a similar statement: “getting new features to users sooner.”
Interestingly, not all participants that mentioned the time to deliver new functionalities
report that rapid releases always reduce such time. For F22, rapid releases “reduce the
time to deliver issues to end users in some cases, and lengthen them in others.” More
specifically, F24 says that “Low priority issues (new features) take less time to be delivered,
whereas high priority ones (important bugs) take more time.”

Another recurrent perception about rapid releases is the faster user feedback"")
due to the constant delivery of new functionalities. For instance, E29 provides an ex-
ample that “you don'’t find yourself fixing a bug that you introduced two years ago which

Chapter 5. Why do Delivery Delays Occur? 110

the field only discovered on the release.”

Finding 33—Development. We do not observe a specific theme that is recurrent with
respect to development activities. Instead, we observe a broad range of themes that are
cited by the participants. Among such themes, we observe quality,'®) more functionalities,?
better motivation,® and better prototyping.*) Quality should be a measure of success

of using rapid release cycles. According to E26, “quality of delivered code should remain
the same or improve” after switching to rapid releases. Another way to measure the
success of a rapid release cycle is the number of functionalities®® that are completed.
E34 states the following: “T would see if more issues were completely fixed” as a measure

of success.

Moreover, rapid releases may also impact team members’ motivation. For in-
stance, F06's opinion about why to switch to rapid release cyclesis “the need to motivate
the community via more frequent collaboration.” Finally, rapid release cycles may also
improve prototyping activities. For instance, E27 argues that, by adopting rapid re-
leases, a development team can “fix bugs quickly [and] prototype features, having results
in few months.”

The allure of delivering addressed issues more quickly to users is the most recurrent
motivator of switching to a rapid release cycle. Moreover, the allure of improving
management flexibility and quality of addressed issues are other advantages that

are perceived by our participants with respect to switching to rapid release cycles.

5.3.3 RQ3:Do participants agree with our quantitative findings about
delivery delay?

RQ3: Motivation

The main motivation for this research question is to solicit feedback about our
quantitative findings. More specifically, we aim to understand whether our quantitative
findings resonates with the participants’ perception of delivery delays.

RQ3: Results

In this research question, we investigate how our participants feel about the
data that we collect during our prior quantitative studies (Studies 1 and 2). This research
question is divided into two subsections—one for each theme that is investigated in
this thesis— (i) reasons for delivery delay in general and (ii) the impact of rapid release

Chapter 5. Why do Delivery Delays Occur? 11

ZNeXt releaseZAﬂer 1 releaseZIAfter 2 reIeases.After 3 or more releases

89%
"]
8 75
()] 66%
@
©
[¢]
o
o
o 4
£ 20
(&) 40%
[V
o
_5 30%
e}
s 25 23%
Q.
<
o 14% 14%
7% g 6%
O- 2% 1%
Eclipse Firefox ArgoUML

Figure 40 - Proportion of addressed issues that have their delivery delayed by a given
number of releases. For example, 89% of the addressed issues skip two
Firefox stable releases before being shipped to users (this chart was already
presented in Chapter 3.

cycles on delivery delay (Figure 1).

Finding 34—delivery delay in general. In this analysis, we present the data that we
collect in our prior studies (Chapter 3) and investigate if this data resonates with
participants’ experience. We provide the methodology of our data-related questions to
participants through a web page that is mentioned in our surveys (see Appendix D).

Figure 40 shows the chart that we presented to participants. For example, 89%
of the addressed issues skip two Firefox stable releases before being shipped to users.
The most recurrent themes among the responses of participants to explain this data
are: team workload® and dependency.» Among the responses that are related to team
workload,® E27 explains that “committers are too busy,” while E26 argues that there
might be “delay[s] in review[s] when the issues [are] completed,” which can generate
delivery delay. Regarding dependency,?) E32's opinion is that delivery delay may hap-
pen due to “the strong connection to other Eclipse projects which makes integration
more costly (time consuming).” Furthermore, two of our interviewees (F11 and F23)
provide us with examples of why addressed issues may be delayed due to dependency
problems. For example, F23 explains that delivery delay can happen when there are

Chapter 5. Why do Delivery Delays Occur? 112

“dependencies between projects and one of them gets done, but the other implementation
takes a longer while.” Another example, provided by F23is when “you release a bug fix
but then you realize: Hey! These users are not able to use these websites anymore because
web servers implement the spec in a wrong way or do some really weird things that are
not expected.”

Additionally, we ask participants from the Eclipse and ArgoUML projects about
their opinion regarding why the data from the Firefox project behaves differently from
theirs, i.e., a larger number of releases being skipped by addressed issues. The most
recurrent responses explain that this difference may be due to the rapid release cyclet®
that is adopted by the Firefox project. For example, E30’s opinion is that “on a rapid
release cycle (e.g. 6 weeks for firefox), a two-release delay means 12 weeks, less than 3
months, which is still less than no delay for a fix submitted early in a project with a
6-month release cycle.”

Finding 35—Impact of switching to a rapid release cycle. We present the data that is
shown in Figure 24d to the participants of the Firefox project. Figure 24d compares the
delivery delay between traditional and rapid release cycles. We then ask whether this
result resonates with the participants’ experience. More details about how we show
this data to participants can be found in Appendix E. From the 14 responses that we
received for this question, 5 participants explicitly disagree with our analysis, while 6
participants explicitly agree with it.

We could interview only two participants that disagree with the results (FO6 and
F09). After providing extra explanation about our methodology and asking them to
elaborate on their responses, we could better understand their reasons. F06 clarifies:
“I'm not surprised that there are things in that bucket” (the short delays due to minor
traditional releases), instead “I'm surprised that there are many of them.” In addition,
F09 declared “I misunderstood [your] question, but now it [(the data)] makes sense.”
With respect to the remaining participants that disagree with our results, they inform
us that the data does not resonate with their experience. For instance, F21 provides
the following opinion “this does not resonate with my experience. I find the traditional
model is much much slower than rapid release to get fixes in users hands.” Unfortunately,
we did not have the opportunity to interview such participants to better understand
why our data do not reasontes with their experience.

From the set of participants that agree with our results, two of them explain that
the behaviour that is presented by the traditional release data is due to the integration
rush'® that happens prior to shipping. F15’s opinion is that “since missing a release
cycle isn’t a big deal, more features are kept from being released until they’re properly
polished instead of being rushed at the end of a long release cycle.” F22 also provides

Chapter 5. Why do Delivery Delays Occur? 113

us with a reasonable explanation when stating that our result “makes perfect sense as
issues will, unless fast-tracked or held back, be released a set quantum of time after they
are completed. This is dominated by the timing of the release schedule, not by the timing
of the discovery or fix.”

The dependency of addressed issues on other projects and team workload are major
perceived reasons to explain our findings about delivery delays. Moreover, par-
ticipants are divided when explaining why traditional releases may have shorter
delivery delays. Nevertheless, the fact that in rapid releases an integration rush is
no longer needed and that additional time can be spent on polishing addressed
issues emerge as main explanations as to why traditional releases can have shorter
delivery delays.

5.4 Study Limitations

Data limitations. In our qualitative analysis, we had few participants (37). How-
ever, such an analysis is important to (i) gain insights from participants of additional
projects (ArgoUML and Eclipse) and (ii) better understand why delivery delay hap-
pens. Moreover, we sue Open Coding to perform our qualitative analysis. Although the
coding process is performed by two authors independently and reviewed by a third
author, we cannot claim that we reach all the perspectives that are possible from our

questions.

Generalizability limitations. External threats are concerned with our ability to
generalize our results. We survey participants from three different projects (Firefox,
ArgoUML, and Eclipse) and perform four follow-up interviews to gain deeper insights
about the responses that we obtain from our surveys. Still, we cannot claim that our
results are generalizable to other software projects that are not studied in this work.
Hence, replication of this work using other projects is required in order to reach more
general conclusions.

5.5 Conclusions

In this study, we survey 37 participants from the Firefox, ArgoUML, and Eclipse
projects. We make the following observations:

* The perceived reasons for delivery delay of addressed issues are primarily related

Chapter 5. Why do Delivery Delays Occur? 114

to activities such as development, decision making, team collaboration, and risk
management (see Findings 25, 26, 27, and 28). We also observe that frustration is
a key perceived consequence of dleivery delays (see Theme 29.

* The dependency of issues on other projects and team workload are the main
perceived reasons to explain our data about delivery delay in general (see Find-
ing 34).

* The allure of delivering addressed issues more quickly to users is the most recur-
rent motivator for switching to a rapid release cycle (see Finding 32). In addition,
the allure of improving management flexibility and quality of addressed issues are
other advantages that are perceived by our participants (see Findings 31 and 33).

* Integration rush and the increased time that is spent on polishing addressed
issues (during rapid releases) emerge as main explanations as to why traditional
releases may achieve shorter delivery delays (see Finding 35).

Today the Firefox project is often used in support of proposals for moving to
a rapid release cycle throughout many development organizations worldwide. Yet
there has never been any studies that extensively explored the benefits and challenges
(regarding delivery delays) of rapid release cycles on any project (till our work). In this
regard, our quantitative and qualitative observations may serve any organization that
is interested in adopting a rapid release cycle. For instance, even though the allure
of delivering addressed issues more quickly is the most recurrent motivator to adopt
rapid releases (Finding 32), we observe that this often is not achieved (Finding 18).
In summary, our study provides real observations and offers a wider context of the
dis/advantages of adopting a rapid release strategy.

115

6 Related Work

In this chapter, we survey related research with respect to this thesis. Since the
studies that we perform in this thesis are related to reasons for delivery delay (Theme I)
and impact of release strategies on delivery delay (Theme II), we present related work
with respect to each studied theme.

Jiang et al. JIANG; ADAMS; GERMAN, 2013) studied attributes that could de-
termine the acceptance and integration of a patch into the Linux kernel. A patch is a
record of changes that is applied to a software system to address an issue. To identify
such attributes, the authors built decision tree models and conducted top node anal-
ysis. Among the studied attributes, developer experience, patch maturity, and prior
subsystem are found to play a major role in patch acceptance and integration time.

Choetkiertikul et al. (MORAKOT et al., 2015a; MORAKOT et al., 2015b) study the
risk of issues introducing delays that can postpone the shipment of new releases of a
software project. The authors use local attributes (i.e., attributes that can be collected
in the issue report itself) and network attributes (i.e., attributes that are extracted from
the relationship between issues) to perform their analyses.

Similar to Jiang er al. JIANG; ADAMS; GERMAN, 2013), we also investigate the
integration of addressed issues. However, we focus on the frequency and reasons as to
why delivery delays occur for issues that are already addressed rather than the proba-
bility to accept a particular patch. Differently from Choetkiertikul ef al. (MORAKOT et
al., 2015a; MORAKOT et al., 2015b), we study the attributes that may induce addressed
issues to be prevented from delivery rather than the risk of postponing an upcoming
release.

Shifting from traditional releases to rapid releases has been shown to have an
impact on software quality and quality assurance activities. Méntyla et al. (MANTYLA
et al., 2014) found that rapid releases have more tests executed per day but with less
coverage. The authors also found that the number of testers decreased in rapid releases,
which increased the test workload. Souza et al. (SOUZA; CHAVEZ; BITTENCOURT,
2014) found that the number of reopened bugs increased by 7% when Firefox changed
to a rapid release cycle. Souza et al. (SOUZA; CHAVEZ; BITTENCOURT, 2015) found
that backout of commits increased when rapid releases were adopted. However, they
note that such results may be due to changes in the development process rather
than the rapid release cycle—the backout culture was not widely adopted during the
traditional Firefox releases. We also investigate the shift from traditional releases to
rapid releases in this thesis. However, we analyze delivery delay rather than quality

Chapter 6. Related Work 116

and quality assurance activities.

It is not clear yet if rapid releases lead to a faster rate of bugs fixes. Baysal et
al. (BAYSAL; DAVIS; GODFREY, 2011) found that bugs are fixed faster in Firefox tra-
ditional releases when compared to fixes in the Chrome rapid releases. On the other
hand, Khomh efal. (KHOMH et al., 2012) found that bugs that are associated with crash
reports are fixed faster in rapid Firefox releases when compared to Firefox traditional
releases. However, fewer bugs are fixed in rapid releases, proportionally. Our study
corroborates that issues are addressed more quickly in rapid release cycles, but tend
to wait longer to be delivered to the end users.

Rapid releases may cause users to adopt new versions of the software earlier.
Baysal et al. (BAYSAL; DAVIS; GODFREY, 2011) found that users of the Chrome browser
are more likely to adopt new versions of the system when compared to traditional
Firefox releases. Khomh et al. (KHOMH et al., 2012) also found that the new versions of
Firefox that were developed using rapid releases were adopted more quickly than the
versions under traditional releases. In this thesis, we investigate the impact that a shift
from traditional to rapid releases has on delivering addressed issues to users rather
than user adoption of new releases.

117

7 Conclusions

Issue Tracking Systemshave long been used to manage bug-fixes, enhancements
or new features (i.e., issues). For a software project to achieve a sustained success, it
has to keep including new exciting features, fixing bugs and improving the existent
functionality. In addition, failing to address issues, may cause a software project to
lose its credibility before its users.

On the other hand, addressed issues may suffer undesirable delays before being
released (e.g., delivery delay). In this thesis, we empirically study the delays that are
involved prior the release of addressed issues to end users. In the remainder of this
chapter, we outline the contributions of this thesis and disclose promising venues for
future work.

7.1 Contributions and Findings

Thesis Statement: Even though issues are addressed, they may still suffer delivery
delays that software development teams need to manage. Historical data recorded

in software repositories can be used to understand and estimate delivery delay.

The overarching goal of this thesis is to understand why addressed issues may
suffer delivery delays after being addressed. To perform our studies, we leverage data
that is recorded in Version Control Systems and Issue Tracking Systems and we survey
team members of our subject projects. We answer the questions that guided our studies
below:

* Study 1—How frequent is delivery delay? Delivery delays are frequent in our
subject projects (e.g., 34% to 98% of addressed issues were delayed by at least
one release). In addition, we find that such addressed issues are unlikely to be
delayed solely because they were addressed close to an upcoming release. Finally,
we are able to accurately identify addressed issues that are likely to suffer from
prolonged delays (obtaining ROC areas above 0.80) (Chapter 3).

e Study 2—Do rapid releases reduce delivery delays? Rapid releases are not silver
bullets to reduce the delivery delay of addressed issues. Instead, rapid releases
may improve the consistency of the delivery rate of addressed issues. We find

Chapter 7. Conclusions 118

that the time at which an issue is addressed during a release cycle plays a major
role in both types of release strategy (Chapter 4).

* Study 3—Why do delivery delays occur? Limited testing capacity and lack of
code review are reasons as to why delivery delays occur. Also, the allure of de-
livering addressed issues more quickly is the main motivator to adopt a rapid
release cycle although such a quicker delivery it is not always achieved according
to our empirical observations. Integration rush and the increased time that is
spent on polishing addressed issues (during rapid releases) emerge as one of the
main explanations as to why traditional releases may achieve shorter delivery
delays (Chapter5).

We observe that our some of our quantitative findings are corroborated by our
qualitative findings after performing our studies. According to our statistical models
that are used in Chapter 3, the number of addressed issues that are accumulated in
the backlog plays a major role to estimate the delivery delay of addressed issues. We
also observe this result by analyzing the answers of our participants (see Finding 25).
Although controversial between our participants, it is interesting to note that not all
of them state that rapid releases lead to a quicker delivery of addressed issues (see
Finding 32). Indeed, our quantitative Finding 18 corroborates such a perception of our
participants. Finally, the time at which an issueis addressed (a.k.a. queue position) which
is one of the most important attributes of our statistical models in Chapter 4, received
the highest importance rates from our participants (see Table 18). In addition, our
qualitative findings help us reach deeper insights about our quantitative findings. For
example, we observe through our models that factors that are related to team workload
may strongly impact delivery delays (see Finding 10). By performing our qualitative
analysis, we gather more details as to why workload may have such an impact. For
instance, team workload may produce a lack of personnel to review code, which can
lead to a delivery delay (see Finding 34). Also, the collaboration between teams is
important because when an addressed issue is prioritized differently by different
teams, such an issue may suffer from a delivery delay (see Finding 28).

Our performed studies suggest that even though issues are addressed, they may
still suffer delivery delays that software development teams need to manage. Historical
data recorded in software repositories can be used to better understand and estimate
delivery delays. In addition, future research in Software Engineering should not only
consider the required time to develop a new software functionality when assessing
new tools or practices, but also whether such new tools or practices will likely help the
delivery of new software functionalities.

Chapter 7. Conclusions 119

7.2 Future Work

The studies that are performed in this thesis pave a way for several future work
possibilities. We outline some venues for future work below.

Replication. Future work could replicate the studies that are performed in this thesis
using other large scale software projects. Such replication studies are important
to reach more generalizable conclusions about delivery delays. For instance, one
could study the most important factors related to delivery delays in the industry
rather than open source projects.

Software Quality. To study the trade-off between delivery delays and software qual-
ity is important. For example, one could empirically investigate whether rapid
releases deliver software issues with a higher quality despite of the increased
delivery delay of addressed issues.

Tooling. Several tools could be developed to improve the practice of Software Engi-
neering. For instance, Issue Tracking Systems could allow the tagging of addressed
issues that are going to be delayed. The development team could also fill in the
reasons why an addressed issue is being delayed. Such type of features can be
used for documentation purposes as well as for letting users and contributors
more aware as to why an addressed issue is being delayed.

Prediction. A considerable effort has been invested in the prediction of software
bugs. Bugs are already known to be harmful for software systems, so that their
prediction is of great importance to avoid unwanted costs. Another possibility of
future work is the accurate prediction of delivery delays, which could allow for a
better planing and risk mitigation in software projects.

120

Bibliography

ADAMS, B.; MCINTOSH, S. Modern Release Engineering in a Nutshell: Why
Researchers should Care. In: Proceedings of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). [S.1.: s.n.], 2016. p. 78-90.
Cited on page 74.

ALGHAMDI, H. M. et al. An automated approach for recommending when to stop
performance tests. In: IEEE. Proceedings of the International Conference on Software
Maintenance and Evolution. [S.1.], 2016. p. toAppear. Cited on page 105.

ANBALAGAN, P; VOUK, M. On predicting the time taken to correct bug reports in
open source projects. In: Proceedings of the 2009 IEEE International Conference on
Software Maintenance. [S.1.: s.n.], 2009. (ICSM ’09), p. 523-526. Cited 3 times on pages
16, 23, and 45.

ANTONIOL, G. et al. Is it a bug or an enhancement?: a text-based approach to classify
change requests. In: Proceedings of the 2008 conference of the Centre for Advanced
Studies on Collaborative Research (CASCON). [S.1.: s.n.], 2008. p. 23-37. Cited 3 times
on pages 15, 21, and 75.

ANVIK, J.; HIEW, L.; MURPHY, G. C. Coping with an open bug repository. In:
Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology eXchange. [S.1.: s.n.],
2005. (eclipse "05), p. 35-39. Cited on page 16.

ANVIK, J.; HIEW, L.; MURPHY, G. C. Who should fix this bug? In: Proceedings of the
28th International Conference on Software Engineering. [S.l.: s.n.], 2006. (ICSE ’06), p.
361-370. Cited 3 times on pages 15, 21, and 22.

BASKERVILLE, R.; PRIES-HE]JE, J. Short cycle time systems development. In:
Information Systems Journal. [S.1.: s.n.], 2004. v. 14, n. 3, p. 237-264. Cited on page 74.

BAYSAL, O.; DAVIS, I.; GODFREY, M. W. A tale of two browsers. In: ACM. Proceedings
of the 8th Working Conference on Mining Software Repositories (MSR). [S.1.], 2011. p.
238-241. Cited 2 times on pages 74 and 117.

BECK, K. Extreme programming explained: embrace change. In: . [S.l.]: Addison-Wesley
Professional, 2000. Cited on page 74.

BELLER, M.; GOUSIOS, G.; ZAIDMAN, A. How (much) do developers test? In: IEEE.
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. [S.1.], 2015.
v. 2, p. 559-562. Cited on page 105.

BHATTACHARYA, P; NEAMTIU, I. Bug-fix time prediction models: Can we do better?
In: Proceedings of the 8th Working Conference on Mining Software Repositories. [S.1.:
s.n.], 2011. (MSR '11), p. 207-210. Cited on page 23.

BREIMAN, L. Random forests. In: Machine Learning. [S.1.: s.n.], 2001. (Springer Journal
no. 10994), p. 5-32. Cited on page 47.

Bibliography 121

BROOKS, E P. The mythical man-month. [S.1.]: Addison-Wesley Reading, MA, 1975.
v.1995. Cited on page 47.

CLIFE N. Dominance statistics: Ordinal analyses to answer ordinal questions. In:
Psychological Bulletin. [S.1.: s.n.],1993. v. 114, n. 3, p. 494-509. Cited 3 times on pages 41,
79, and 82.

COSTA, D. A. d. et al. An empirical study of delays in the integration of addressed
issues. In: Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. [S.1.: s.n.], 2014. p. 281-290. Cited 5 times on pages 27, 46, 47, 48, and 84.

COSTA, D. A. da et al. The impact of switching to a rapid release cycle on the integration
delay of addressed issues: an empirical study of the mozilla firefox project. In: ACM.
Proceedings of the 13th International Workshop on Mining Software Repositories. [S.1.],
2016. p. 374-385. Cited on page 74.

DELONE, W. H.; MCLEAN, E. R. The delone and mclean model of information systems
success: a ten-year update. Journal of management information systems, v.19, n. 4, p.
9-30, 2003. Cited on page 15.

DUNN, O. J. Multiple comparisons among means. Journal of the American Statistical
Association, Taylor & Francis Group, v. 56, n. 293, p. 52-64, 1961. Cited 2 times on pages
41 and 101.

DUNN, O. J. Multiple comparisons using rank sums. Technometrics, Taylor & Francis,
V. 6, n. 3, p. 241-252,1964. Cited 2 times on pages 41 and 101.

EFRON, B. How biased is the apparent error rate of a prediction rule? Journal of the
American Statistical Association, Taylor & Francis, v. 81, n. 394, p. 461-470, 1986. Cited 2
times on pages 51 and 86.

FISHER, R. A. Statistical methods for research workers. [S.1.]: Genesis Publishing Pvt
Ltd, 1925. Cited on page 101.

FREEDMAN, D. A. Statistical models: theory and practice. [S.1.]: cambridge university
press, 2009. Cited on page 50.

GIGER, E.; PINZGER, M.; GALL, H. Predicting the fix time of bugs. In: Proceedings of
the 2nd International Workshop on Recommendation Systems for Software Engineering.
[S.1.: s.n.], 2010. (RSSE '10), p. 52-56. Cited 5 times on pages 16, 23, 45, 48, and 87.

GUQ, P J. et al. Characterizing and predicting which bugs get fixed: An empirical study
of microsoft windows. In: Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1. [S.1.: s.n.], 2010. (ICSE "10), p. 495-504. Cited on
page 23.

HANLEY, J. A.; MCNEIL, B.]J. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, v. 143, n. 1, p. 29-36, 1982. Cited on
page 49.

HARRELL, E E. Regression modeling strategies: with applications to linear models,
logistic regression, and survival analysis. [S.1.]: Springer, 2001. Cited 4 times on pages 7,
50, 84, and 87.

Bibliography 122

HERBSLEB, J. D.; MOCKUS, A. An empirical study of speed and communication in
globally distributed software development. IEEE Transactions on software engineering,
IEEE, v. 29, n. 6, p. 481-494, 2003. Cited on page 15.

HERRAIZ, 1. et al. Towards a simplification of the bug report form in eclipse. In:
Proceedings of the 2008 International Working Conference on Mining Software
Repositories. [S.1.: s.n.], 2008. (MSR '08), p. 145-148. Cited 5 times on pages 23, 49, 58, 95,
and 107.

HOOIMEIJER, P; WEIMER, W. Modeling bug report quality. In: Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering. [S.1.: s.n.], 2007. (ASE ’07), p. 34-43. Cited on page 22.

HOWELL, D. C. Median absolute deviation. In: Encyclopedia of Statistics in Behavioral
Science. [S.1.: s.n.], 2005. Cited 2 times on pages 25 and 79.

IASONOS, A. et al. How to build and interpret a nomogram for cancer prognosis. In:
Journal of Clinical Oncology. [S.1.]: American Society of Clinical Oncology, 2008. v. 26,
n. 8, p. 1364-1370. Cited 2 times on pages 87 and 88.

JEONG, G.; KIM, S.; ZIMMERMANN, T. Improving bug triage with bug tossing graphs.
In: Proceedings of the the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software
engineering. [S.L.: s.n.], 2009. p. 111-120. Cited 2 times on pages 48 and 87.

JIANG, Y.; ADAMS, B.; GERMAN, D. M. Will my patch make it? and how fast?: Case
study on the linux kernel. In: Proceedings of the 10th Working Conference on Mining
Software Repositories. [S.].: s.n.], 2013. (MSR '13), p. 101-110. Cited 7 times on pages 15,
16, 17, 24, 48, 87, and 116.

KAMPSTRA, P. et al. Beanplot: A boxplot alternative for visual comparison of
distributions. In: Journal of Statistical Software. [S.1.: s.n.], 2008. v. 28, n. 1, p. 1-9. Cited
2 times on pages 79 and 82.

KHOMH, E et al. Do faster releases improve software quality? an empirical case study
of mozilla firefox. In: IEEE. Proceedings of the 9th IEEE Working Conference on Mining
Software Repositories (MSR). [S.1.], 2012. p. 179-188. Cited 3 times on pages 74, 81,
and 117.

KIM, S.; WHITEHEAD JR., E. J. How long did it take to fix bugs? In: Proceedings of the
2006 International Workshop on Mining Software Repositories. [S.1.: s.n.], 2006. (MSR
'06), p. 173-174. Cited 3 times on pages 16, 23, and 45.

KRUSKAL, W. H.; WALLIS, W. A. Use of ranks in one-criterion variance analysis. Journal
of the American statistical Association, Taylor & Francis, v. 47, n. 260, p. 583-621, 1952.
Cited 2 times on pages 41 and 101.

LEYS, C. et al. Detecting outliers: Do not use standard deviation around the mean, use
absolute deviation around the median. In: Experimental Social Psychology Journal.
[S.1.: s.n.], 2013. v. 49, p. 764-766. Cited 2 times on pages 25 and 79.

MANTYLA, M. V. et al. On rapid releases and software testing: a case study and a
semi-systematic literature review. In: Journal of Empirical Software Engineering. [S.1.]:
Springer, 2014. p. 1-42. Cited 2 times on pages 74 and 116.

Bibliography 123

MANTYLA, M. V. et al. On rapid releases and software testing. In: Software Maintenance
(ICSM), 2013 29th IEEE International Conference on. [S.1.: s.n.], 2013. p. 20-29. Cited on
page 25.

MARKS, L.; ZOU, Y.; HASSAN, A. E. Studying the fix-time for bugs in large open source
projects. In: Proceedings of the 7th International Conference on Predictive Models in
Software Engineering. [S.1.: s.n.], 2011. (Promise '11), p. 11:1-11:8. Cited 3 times on pages
16, 23, and 45.

MCINTOSH, S. et al. An Empirical Study of the Impact of Modern Code Review
Practices on Software Quality. Empirical Software Engineering, v. 21, n. 5, p. 2146-2189,
2016. Cited on page 105.

MOCKUS, A.; FIELDING, R. T.; HERBSLEB, J. D. Two case studies of open source
software development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol., v. 11,
n. 3, p. 309-346, 2002. Cited on page 58.

MORAKOT, C. et al. Characterization and prediction of issue-related risks in software
projects. In: 12th IEEE/ACM Working Conference on Mining Software Repositories, MSR
2015, Florence, Italy, May 16-17, 2015. [S.1.: s.n.], 2015. p. 280-291. Cited 3 times on pages
16, 24, and 116.

MORAKOT, C. et al. Predicting delays in software projects using networked
classification. In: 30th IEEE/ACM International Conference on Automated Software
Engineering ASE, Lincoln, Nebraska, USA, November 9-13, 2015. [S.1.: s.n.], 2015. Cited 3
times on pages 16, 24, and 116.

NAGAPPAN, N.; BALL, T. Use of relative code churn measures to predict system defect
density. In: Software Engineering, 2005. ICSE 2005. Proceedings. 27th International
Conference on. [S.1.: s.n.], 2005. p. 284-292. Cited 2 times on pages 48 and 87.

OLKIN, G. C. S. E L. Springer texts in statistics. 2002. Cited on page 50.

PANJER, L. D. Predicting eclipse bug lifetimes. In: Proceedings of the Fourth
International Workshop on Mining Software Repositories. [S.1.: s.n.], 2007. (MSR ’07),
p. 29-. Cited 3 times on pages 23, 46, and 85.

RAHMAN, M. T; RIGBY, P. C. Release stabilization on linux and chrome. IEEE Software,
v. 32, n. 2, 2015. Cited on page 37.

ROMANQO, J. et al. Should we really be using t-test and cohen’s d for evaluating
group differences on the nsse and other surveys? In: Annual meeting of the Florida
Association of Institutional Research. [S.].: s.n.], 2006. Cited on page 41.

SAHA, R.; KHURSHID, S.; PERRY, D. An empirical study of long lived bugs. In: 2014
Software Evolution Week - IEEE Conference onSoftware Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE). [S.1.: s.n.], 2014. p. 144-153. Cited on page 22.

SARLE, W. The varclus procedure. SAS/STAT User’s Guide,, 1990. Cited on page 51.

SCHROTER, A.; BETTENBURG, N.; PREMRA]J, R. Do stack traces help developers fix
bugs? In: Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on.
[S.1.: s.n.], 2010. p. 118-121. Cited 2 times on pages 46 and 85.

Bibliography 124

SHIHAB, E. et al. Predicting re-opened bugs: A case study on the eclipse project. In:
IEEE. Proceedings of 17th Working Conference on Reverse Engineering (WCRE). [S.1.],
2010. p. 249-258. Cited on page 85.

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. Rapid releases and patch backouts: A
software analytics approach. In: IEEE Software Journal. [S.1.]: IEEE, 2015. v. 32, n. 2, p.
89-96. Cited 2 times on pages 74 and 116.

SOUZA, R.; CHAVEZ, C.; BITTENCOURT, R. A. Do rapid releases affect bug reopening?
a case study of firefox. In: IEEE. Proceedings of the Brazilian Symposium on Software
Engineering (SBES). [S.1.], 2014. p. 31-40. Cited 2 times on pages 74 and 116.

SPEARMAN, C. The proof and measurement of association between two things. The
American journal of psychology, JSTOR, v. 15, n. 1, p. 72-101, 1904. Cited on page 101.

STEEL, R. G.; JAMES, H. Principles and procedures of statistics: with special reference to
the biological sciences. [S.1.],1960. Cited on page 51.

SUBRAMANIAM, C,; SEN, R.; NELSON, M. L. Determinants of open source software
project success: A longitudinal study. In: Journal of Decision Support Systems. [S.1.]:
Elsevier, 2009. v. 46, n. 2, p. 576-585. Cited on page 15.

TIAN, Y. et al. On the unreliability of bug severity data. Empirical Software Engineering,
Springer, p. 1-26, 2015. Cited 2 times on pages 58 and 95.

WEIB, C. et al. How long will it take to fix this bug? In: Proceedings of the Fourth
International Workshop on Mining Software Repositories. [S.1.: s.n.], 2007. (MSR ’07),
p. 1-. Cited 3 times on pages 16, 23, and 45.

WILKS, D. S. Statistical methods in the atmospheric sciences. In: . [S.].]: Academic
press, 2011. v. 100. Cited 2 times on pages 79 and 82.

ZHANG, E et al. An empirical study on factors impacting bug fixing time. In: Reverse
Engineering (WCRE), 2012 19th Working Conference on. [S.l.: s.n.], 2012. p. 225-234.
Cited 2 times on pages 23 and 24.

ZHANG, H.; GONG, L.; VERSTEEG, S. Predicting bug-fixing time: An empirical study
of commercial software projects. In: Proceedings of the 2013 International Conference
on Software Engineering. [S.1.: s.n.], 2013. (ICSE ’"13), p. 1042-1051. Cited 3 times on
pages 16, 23, and 45.

Appendix

126

APPENDIX A - Firefox Survey

Understanding the Delivery Delay of Completed
Issues

This survey is part of a broad research project about the delay to deliver new software issues to
end users. By issues we broadly refer to bugs, new features and enhancements. Our research
team is from Australia, Brazil, and Canada.

Our goal is to study how much time is necessary to deliver issues that are completed (i.e.,
implemented and tested) to the end users. For example, whether a completed issue is delivered
as soon as it is completed or if it is often delayed for several releases.

The survey will ask you a few general and specific questions (i.e., we will show you data that is
derived from Firefox).

1. By answering this survey, you are eligible
to win a $100 gift card from Amazon. If
you'd like to participate in the draw, please
leave your email address below.

2. For how long have you been developing software?
Mark only one oval.

0 years
1 year

2 years
3 years
4 years
5 years
6 years
7 years
8 years
9 years

10 or more years

3. For how long have you worked in the Firefox project?
Mark only one oval.
0 years
1 year
2 years
3 years
4 years

5 or more years

APPENDIXA. Firefox Survey 127

4. How would you describe your roles in the software development of the Firefox project?
(e.g., developer, tester, release manager etc.)

5. In your opinion, what motivates a development team to shift from a traditional release
cycle (e.g., a release every 9 to 18 months) to a rapid release cycle (e.g., a release every
6 weeks)?

6. In this survey, we consider that an issue is completed when it is implemented and
tested, i.e., it is ready to be integrated. Do you remember an issue that the development
team completed work on, but was not delivered to end users through the next possible
release? Can you tell us what caused the delivery delay of this issue in your opinion?

7. In your experience, how common are the cases in which completed issues (issues that
are implemented and tested) are omitted from the next possible release?

Mark only one oval.
All completed issues are included in the next possible release.
More than 90% of all completed issues are included in the next possible release.

More than three quarters of all completed issues are included in the next possible
release.

More than a half of all completed issues are included in the next possible release.
About a half of all completed issues are included in the next possible release.

Fewer than a half of all completed issues are included in the next possible release.
Fewer than a quarter of all completed issues are included in the next possible release.
Fewer than 10% of all completed issues are included in the next possible release.

No completed issues are included in the next possible release.

APPENDIXA. Firefox Survey

128

8. Who decides when a completed issue is integrated into an official release in your team?

9. In your opinion, when is the delivery of a completed issue to the end user considered to
be delayed in your project?

Delivery delay in your project

In our research, we consider that a completed issue suffers from a delivery delay if such an issue
is not included in the next release immediately after the issue is completed, i.e., such a completed
issue is postponed to be delivered in future releases. We use the term delivery delay to refer to
completed issues that are not delivered in the next immediate release.

10. In your opinion, is it frustrating to users when a completed issue skips one or more
releases? Why?

11. Is it frustrating for the team members when a completed issue skips one or more
releases? Why?

Reasons related to delivery delay

We are developing a tool to detect if a completed issue will suffer from delivery delay. In this part
of the survey, we want to know your opinion about reasons that we are investigating in our
research to identify completed issues that are likely to suffer from delivery delay.

APPENDIXA. Firefox Survey 129

12. Assuming that an issue is completed today (implementation and testing are completed),
what reasons can you think of for the issue not to be delivered to end users in the next
release?

Reasons related to delivery delay

13. What can team members do to avoid the delivery delay of completed issues?

14. To what extent do you agree that the characteristics listed in the table below are related
to the delivery delay of a completed issue?

Mark only one oval per row.

Strongly Agree Nelthgr agree
agree nor disagree

Strongly

Disagree disagree

The reporter of a
completed issue

The resolver of a
completed issue

The priority value of a
completed issue

The severity value of a
completed issue
Number of comments
recorded in a completed
issue

Number of files modified
to complete an issue
Number of lines of code
to complete an issue
The time at which an
issue is completed
during a release cycle

Feedback on the results about delivery delay

In this section, we are interested in your feedback about the results that we found in our research
using the publicly available data of your project.

APPENDIXA. Firefox Survey 130

15. We found that 89% of the Firefox completed issues are delayed by two releases (see
Figure 1) from releases 10 to 27. In your opinion, why is this the case for the Firefox
project? More details about the methodology of this finding in http://goo.gl/VC3CoK

Figure 1. Proportion of completed issues that suffered from
delivery delay.

89%

75

50 1 Not delayed

Delayed by one release
Delayed by two releases

Delayed by three or more releases

25

Proportion of completed issues

8%

2 1%

Firefox

16. We find that: (1) the more time spent on issues in the release cycle, the shorter the
delivery delay and (2) the higher the number of completed-but-not-yet-integrated issues
the larger the delivery delay. Do these results resonate with your experience? Why do
you think so?

Shifting to a rapid release cycle

APPENDIXA. Firefox Survey 131

In this part of the survey, we are interested in getting your feedback about the impact of shifting to
a rapid release cycle on the delivery delay of completed issues. We also present results that are
obtained in our research.

17. Have you worked in both traditional and rapid release cycles of the Firefox project?
Mark only one oval.

Yes
No

18. In your opinion, how much impact does a rapid release cycle have on the time to deliver
completed issues for end users?

19. Did your project evaluate the shift to rapid release cycles? If so, how?

20. In our research, we compared the time in days that traditional and rapid releases (both
minor and majors) take to deliver completed issues to users. We obtained the results
that are provided in Figure 3. The Figure shows a beanplot for each release strategy.
The vertical curves of beanplots compare the distributions in traditional and rapid
releases. The higher the frequency of data within a particular value, the thicker the bean
is plotted at that particular value on the y axis. Finally, the black horizontal line
represents the median value of each distribution. We observe that the median number
of days to deliver is significantly higher with the rapid release cycle, but there is much
less variation. Does this result resonate with your experience? Why do you think so?
More details about the methodology of this finding in http://goo.gl/me9aOw

Figure 3. Number of days (log-scale) to deliver completed
issues in traditional and rapid release cycles.

APPENDIXA. Firefox Survey 132

500
I

Rapid

Days
50
|

Traditional

|
Release strategies

Ending our questionnaire

21. If you'd like to participate for the $100
Amazon gift card draw and haven't
provided your e-mail yet, please leave it
below.

22. Would you like to be informed about our findings?
Mark only one oval.

Yes

No

23. Would you be willing to be contacted for a quick online follow-up interview (at a time
convenient for you)?

Mark only one oval.

Yes

No

24. Do you have further comments for us?

133

APPENDIX B - ArgoUML Survey

Understanding The Delivery Delay of Completed
Issues

This survey is part of a broad research project about the delay to deliver new software issues to
end users. By issues we broadly refer to bugs, new features and enhancements. Our research
team is from Australia, Brazil, and Canada.

Our goal is to study how much time is necessary to deliver issues that are completed (i.e.,
implemented and tested) to the end users. For example, whether a completed issue is delivered
as soon as it is completed or if it is often delayed for several releases.

The survey will ask you a few general and specific questions (i.e., we will show you data that is
derived from ArgoUML).

1. By answering this survey, you are eligible
to win a $100 gift card from Amazon. If
you'd like to participate in the draw, please
leave your email address below.

2. For how long have you been developing software?
Mark only one oval.

0 years
1 year

2 years
3 years
4 years
5 years
6 years
7 years
8 years
9 years

10 or more years

3. For how long have you worked in the ArgoUML project?
Mark only one oval.
0 years
1 year
2 years
3 years
4 years

5 or more years

APPENDIX B. ArgoUML Survey 134

4. How would you describe your roles in the software development of the ArgoUML
project? (e.g., developer, tester, release manager etc.)

5. In your opinion, what motivates a development team to shift from a traditional release
cycle (e.g., a release every 9 to 18 months) to a rapid release cycle (e.g., a release every
6 weeks)?

6. In this survey, we consider that an issue is completed when it is implemented and
tested, i.e., it is ready to be integrated. Do you remember an issue that the development
team completed work on, but was not delivered to end users through the next possible
release? Can you tell us what caused the delivery delay of this issue in your opinion?

7. In your experience, how common are the cases in which completed issues (issues that
are implemented and tested) are omitted from the next possible release?

Mark only one oval.
All completed issues are included in the next possible release.
More than 90% of all completed issues are included in the next possible release.

More than three quarters of all completed issues are included in the next possible
release.

More than a half of all completed issues are included in the next possible release.
About a half of all completed issues are included in the next possible release.

Fewer than a half of all completed issues are included in the next possible release.
Fewer than a quarter of all completed issues are included in the next possible release.
Fewer than 10% of all completed issues are included in the next possible release.

No completed issues are included in the next possible release.

APPENDIX B. ArgoUML Survey

135

8. Who decides when a completed issue is integrated into an official release in your team?

9. In your opinion, when is the delivery of a completed issue to the end user considered to
be delayed in your project?

Delivery delay in your project

In our research, we consider that a completed issue suffers from a delivery delay if such an issue
is not included in the next release immediately after the issue is completed, i.e., such a completed
issue is postponed to be delivered in future releases. We use the term delivery delay to refer to
completed issues that are not delivered in the next immediate release.

10. In your opinion, is it frustrating to users when a completed issue skips one or more
releases? Why?

11. Is it frustrating for the team members when a completed issue skips one or more
releases? Why?

Reasons related to delivery delay

We are developing a tool to detect if a completed issue will suffer from delivery delay. In this part
of the survey, we want to know your opinion about reasons that we are investigating in our
research to identify completed issues that are likely to suffer from delivery delay.

APPENDIX B. ArgoUML Survey 136

12. Assuming that an issue is completed today (implementation and testing are completed),
what reasons can you think of for the issue not to be delivered to end users in the next
release?

Reasons related to delivery delay

13. What can team members do to avoid the delivery delay of completed issues?

14. To what extent do you agree that the characteristics listed in the table below are related
to the delivery delay of a completed issue?

Mark only one oval per row.

Strongly Agree Nelthgr agree
agree nor disagree

Strongly

Disagree disagree

The reporter of a
completed issue

The resolver of a
completed issue

The priority value of a
completed issue

The severity value of a
completed issue
Number of comments
recorded in a completed
issue

Number of files modified
to complete an issue
Number of lines of code
to complete an issue
The time at which an
issue is completed
during a release cycle

Feedback on the results about delivery delay

In this section, we are interested in your feedback about the results that we found in our research
using the publicly available data of your project.

APPENDIX B. ArgoUML Survey 137

15. We found that 34% of the ArgoUML completed issues are delayed by at least one
release (See Figure 1). In your opinion, why is this the case for the ArgoUML project?
More details about the methodology of this finding in http://goo.gl/VC3CoK

Figure 1. Proportion of completed issues that suffered from
delivery delay.

66%

60-

40

Not delayed
Delayed by one release
Delayed by two releases

Delayed by three or more releases

20

14%

Proportion of completed issues

ArgoUML

16. We find that: (1) the more time spent on issues in the release cycle, the shorter the
delivery delay and (2) the higher the number of completed-but-not-yet-integrated issues
the larger the delivery delay. Do these results resonate with your experience? Why do
you think so?

Shifting to a rapid release cycle

APPENDIX B. ArgoUML Survey 138

In this part of the survey, we are interested in getting your feedback about the impact of shifting to
a rapid release cycle on the delivery delay of completed issues.

17. Do you have experience working on a rapid release cycle in any other project?
Mark only one oval.
Yes

No

18. In your opinion, what would be the impact of shifting to a rapid release cycle (e.g., a
release every 6 weeks rather than a release every 9 to 18 months) on the delay to
deliver completed issues, in your project?

19. Figure 2 shows the Firefox project in which 90% of completed issues are delayed by at
least two releases. Firefox adopts a rapid release cycle. How do you feel about the
difference between your project and the Firefox project?

Figure 2. Proportion of completed issues that suffered
delivery delay in the ArgoUML and Firefox projects.

APPENDIX B. ArgoUML Survey

139

75

66%

50

25

Proportion of completed issues

14%

6%

0_

14%

ArgoUML

2%
o

89%

8%

Firefox

1%
I—

Not delayed
Delayed by one release
Delayed by two releases

Delayed by three or more releases

20. If your project had shifted from a traditional to a rapid release cycle, how would you
evaluate if this shift benefited your project?

Ending our questionnaire

21. If you'd like to participate in the $100

Amazon gift card draw and haven't
provided your e-mail yet, please leave it

below.

22. Would you like to be informed about our findings?

Mark only one oval.

Yes
No

APPENDIX B. ArgoUML Survey 140

23. Would you be willing to be contacted for a quick online follow-up interview (at a time
convenient for you)?

Mark only one oval.

Yes

No

24. Do you have further comments for us?

141

APPENDIX C - Eclipse Survey

Understanding The Delivery Delay of Completed
Issues

This survey is part of a broad research project about the delay to deliver new software issues to
end users. By issues we broadly refer to bugs, new features and enhancements. Our research
team is from Australia, Brazil, and Canada.

Our goal is to study how much time is necessary to deliver issues that are completed (i.e.,
implemented and tested) to the end users. For example, whether a completed issue is delivered
as soon as it is completed or if it is often delayed for several releases.

The survey will ask you a few general and specific questions (i.e., we will show you data that is
derived from Eclipse JDT).

1. By answering this survey, you are eligible
to win a $100 gift card from Amazon. If
you'd like to participate in the draw, please
leave your email address below.

2. For how long have you been developing software?
Mark only one oval.

0 years
1 year

2 years
3 years
4 years
5 years
6 years
7 years
8 years
9 years

10 or more years

3. For how long have you worked in the Eclipse (JDT) project?
Mark only one oval.
0 years
1 year
2 years
3 years
4 years

5 or more years

APPENDIX C. Eclipse Survey 142

4. How would you describe your roles in the software development of the Eclipse JDT
project? (e.g., developer, tester, release manager etc.)

5. In your opinion, what motivates a development team to shift from a traditional release
cycle (e.g., a release every 9 to 18 months) to a rapid release cycle (e.g., a release every
6 weeks)?

6. In this survey, we consider that an issue is completed when it is implemented and
tested, i.e., it is ready to be integrated. Do you remember an issue that the development
team completed work on, but was not delivered to end users through the next possible
release? Can you tell us what caused the delivery delay of this issue in your opinion?

7. In your experience, how common are the cases in which completed issues (issues that
are implemented and tested) are omitted from the next possible release?

Mark only one oval.
All completed issues are included in the next possible release.
More than 90% of all completed issues are included in the next possible release.

More than three quarters of all completed issues are included in the next possible
release.

More than a half of all completed issues are included in the next possible release.
About a half of all completed issues are included in the next possible release.

Fewer than a half of all completed issues are included in the next possible release.
Fewer than a quarter of all completed issues are included in the next possible release.
Fewer than 10% of all completed issues are included in the next possible release.

No completed issues are included in the next possible release.

APPENDIX C. Eclipse Survey

143

8. Who decides when a completed issue is integrated into an official release in your team?

9. In your opinion, when is the delivery of a completed issue to the end user considered to
be delayed in your project?

Delivery delay in your project

In our research, we consider that a completed issue suffers from a delivery delay if such an issue
is not included in the next release immediately after the issue is completed, i.e., such a completed
issue is postponed to be delivered in future releases. We use the term delivery delay to refer to
completed issues that are not delivered in the next immediate release.

10. In your opinion, is it frustrating to users when a completed issue skips one or more
releases? Why?

11. Is it frustrating for the team members when a completed issue skips one or more
releases? Why?

Reasons related to delivery delay

We are developing a tool to detect if a completed issue will suffer from delivery delay. In this part
of the survey, we want to know your opinion about reasons that we are investigating in our
research to identify completed issues that are likely to suffer from delivery delay.

APPENDIX C. Eclipse Survey 144

12. Assuming that an issue is completed today (implementation and testing are completed),
what reasons can you think of for the issue not to be delivered to end users in the next
release?

Reasons related to delivery delay

13. What can team members do to avoid the delivery delay of completed issues?

14. To what extent do you agree that the characteristics listed in the table below are related
to the delivery delay of a completed issue?

Mark only one oval per row.

Strongly Agree Nelthgr agree
agree nor disagree

Strongly

Disagree disagree

The reporter of a
completed issue

The resolver of a
completed issue

The priority value of a
completed issue

The severity value of a
completed issue
Number of comments
recorded in a completed
issue

Number of files modified
to complete an issue
Number of lines of code
to complete an issue
The time at which an
issue is completed
during a release cycle

Feedback on the results about delivery delay

In this section, we are interested in your feedback about the results that we found in our research
using the publicly available data of your project.

APPENDIX C. Eclipse Survey 145

15. We found that 60% of the Eclipse JDT completed issues are delayed by at least one
release (See Figure 1). In your opinion, why is this the case for the Eclipse JDT project?
More details about the methodology of this finding in http://goo.gl/VC3CoK

Figure 1. Proportion of completed issues that suffered from
delivery delay.

38%

30 i 30%

23%

Not delayed
2 O 1 Delayed by one release
Delayed by two releases

Delayed by three or more releases

10;

Proportion of completed issues

Eclipse

16. We find that: (1) the more time spent on issues in the release cycle, the shorter the
delivery delay and (2) the higher the number of completed-but-not-yet-integrated issues
the larger the delivery delay. Do these results resonate with your experience? Why do
you think so?

Shifting to a rapid release cycle

APPENDIX C. Eclipse Survey

146

In this part of the survey, we are interested in getting your feedback about the impact of shifting to
a rapid release cycle on the delivery delay of completed issues.

17. Do you have experience working on a rapid release cycle in any other project?
Mark only one oval.

Yes

No

18. In your opinion, what would be the impact of shifting to a rapid release cycle (e.g., a
release every 6 weeks rather than a release every 9 to 18 months) on the delay to
deliver completed issues, in your project?

19. Figure 2 shows the Firefox project in which 90% of completed issues are delayed by at
least two releases. Firefox adopts a rapid release cycle. How do you feel about the
difference between your project and the Firefox project? More details about the
methodology of this finding in http://goo.gl/VC3CoK

Figure 2. Proportion of completed issues that suffered
delivery delay in the Eclipse and Firefox projects.

APPENDIX C. Eclipse Survey 147

89%

75

50 1 Not delayed

Delayed by one release

Delayed by two releases
38%

Delayed by three or more releases

30%

257 23%

Proportion of completed issues

7% e

2%
. 1%

0_

Eclipse Firefox

20. If your project had shifted from a traditional to a rapid release cycle, how would you
evaluate if this shift benefited your project?

Ending our questionnaire

21. If you'd like to participate in the $100
Amazon gift card draw and haven't
provided your e-mail yet, please leave it
below.

22. Would you like to be informed about our findings?
Mark only one oval.

Yes
No

APPENDIX C. Eclipse Survey 148

23. Would you be willing to be contacted for a quick online follow-up interview (at a time
convenient for you)?

Mark only one oval.

Yes

No

24. Do you have further comments for us?

149

APPENDIX D - Methodology Web
Page 1

How do we compute the delivery delay of completed issues?

In this page, we explain how we measure the data that is shown in page 5 of our survey. You can find the concepts that are necessary to understand
the data collection process below.

Delivery delay measures how long it takes for a system functionality (i.e., an issue) to be delivered to the end user from the time at which the issue
was completed (i.e., implemented and tested).

Shfpp_ed

I B

Time

il t2 t3 t4 15

An issue is Release #1 An issue is Release #2 Release #3
reported completed
Delivery delay in terms of releases is the number of official releases that are missed before the issue is officially shipped after it is completed. The

figure above illustrates an issue that is completed at time t3. Such an issue misses release number 2 at time t4. Finally, the completed issue is shipped
in release number 3 at time t5. In this example, the delivery delay of the completed issue is 1 official release.

By "official release" we mean a release that is intended to be used by the entire user base of the project. For example, in a pipelining release strategy
(e.g., as in the Firefox project), in which a release is stabilized through several channels, an official release is the final product of the process, i.e., the
release that is to be published to every user from the release channel.

In the figure below, we show the delivery delay in terms of releases for the completed issues in the Firefox project.

89%
w
Q
3
w
@
3
—
@
[o X 50 4 ' Not delayed
g ' Delayed by one release
(&) Delayed by two releases
‘E Delayed by three or more releases
c
Re,
=]
S
2 25
o
f
o
8%
2% 1%
Firefox

The figure shows that 89% of the Firefox completed issues miss 2 official releases before being shipped to end users.

150

APPENDIX E - Methodology Web
Page 11

How do we compare rapid vs traditional releases?

In this page, we explain how we measure the data that is shown in page 6 of our survey. You can find the concepts that are necessary to understand
the data collection process below.

Shfppfed

ez
QJ 84 days

- W & —8—

i | t2 t3 t4 15

An issue is Release #1 An issue is Release #2 Release #3
reported completed

X

Time

Delivery delay measures how long it takes for a system functionality (i.e., an issue) to be delivered to the end user from the time at which the issue
was completed (i.e., implemented and tested).

Delivery delay in terms of days is the number of days for an issue to be officially shipped after it is completed. The figure above illustrates an issue
that is completed at time t3.
This issue takes 84 days to be shipped at t5.

By "official release" we mean a release that is intended to be used by the entire user base of the project. For example, in a pipelining release strategy
(e.g., as in the Firefox project), in which a release is stabilized through several channels, an official release is the final product of the process, i.e., the
release that is to be published to every user from the release channel.

In the figure below, we show the delivery delay in terms of days for the completed issues in the Firefox project. We collected data from traditional
releases (major and minor releases from version 1.0 to 4.0) and from rapid releases (releases in the release channel from version 10 to 27). The Figure
shows a beanplot for each release strategy. The vertical curves of beanplots compare the distributions in traditional and rapid releases. The higher the
frequency of data within a particular value, the thicker the bean is plotted at that particular value on the y axis. Finally, the black horizontal line
represents the median value of each distribution. We observe that the median number of days to deliver is significantly higher with the rapid release
cycle, but there is much less variation.

500

Days
50
I

Traditional

l
Release strategies

151

APPENDIX F - Invitation Letter

Dear <Participant>,

We are a group of researchers based out of universities in Brazil, Australia,
and Canada. We are performing an empirical study to understand why
some software functionalities are unexpectedly delayed before reaching
end users. With this study, we intend to help software development teams
to better deliver software with little delay or schedule slippage.

In our opinion, you are a perfect fit to our research, since we observed that
you have patrticipated in the development of the <X> project. Would you
mind sharing your thoughts with us by filling out this survey about the <X>
project? The survey has 19 questions (all of them are optional) and will
take less than 15 minutes to complete.

<Survey URL>

To compensate you for your time, we will have a draw to give away $100
Amazon gift certificates to 5% of all participants that answer all questions.

Please, do not hesitate to contact me if you have any questions. More
information about this study is available at <Link of the paper>

Thank you,

Daniel Alencar da Costa.

PhD student at the Federal University of Rio Grande do Norte, Brazil.
http://danielcalencar.github.io

APPENDIX G - Interview Script

Thank you for participating in our survey about the delay to deliver completed issues!

(Part 1)

152

Can you tell us about a specific completed issue in one of your projects that was delayed to be

delivered?

Prompts:

Lack of code review?

Workload of integrators?

Changing requirements?

Marketing issues?

Possible side effects?

The need of extra testing? (or any other test strategy)
Integration effort?

Was this a typical situation?

What other reasons can you think of that can lead the delivery of a completed issue to be
delayed?

In our study, the reporter of an issue and the discussion that occurred
to complete an issue received the lowest ranks as possible reasons that lead
to delivery delay. Do you agree? Why?

On the other hand, the time at which an issue is completed in the release
cycle and the severity of an issue received the highest ranks as reasons that
lead to delivery delay. Do you agree? Why?

(Part 2)

Can you tell us about your experience with the shift from a traditional
release cycle to a rapid release cycle?

Prompts:

Regarding with tests

Regarding with feedback

Amount of functionalities that are delivered
Overall quality

Can you tell us your impressions about the time to deliver completed issues
after the shift?

How would you evaluate the success of a shift to a rapid release cycle?

	Title page
	Acknowledgements
	Abstract
	Publications
	List of Figures
	List of Tables
	Contents
	Introduction
	Problem Statement
	Current Research Limitations
	Thesis Proposal
	Study 1—How frequent is delivery delay?
	Study 2—Do rapid releases reduce delivery delays?
	Study 3—Why do delivery delays occur?
	Chronology of Studies

	Thesis Contributions
	Thesis Organization

	Background
	Issue Reports
	Triaging Issues
	Addressing Issues
	Integrating Issues
	Delivery Delay
	Release Cycles
	Chapter Summary

	How Frequent is Delivery Delay?
	Introduction
	Methodology
	Subjects
	Data Collection

	Results
	RQ1: How often are addressed issues prevented from being released?
	RQ2: Does the stage of the release cycle impact delivery delay?
	RQ3: How well can we model the delivery delay of addressed issues?
	RQ4: What are the most influential attributes for modeling delivery delay?
	RQ5: How well can we identify the addressed issues that will suffer from a prolonged delivery delay?
	RQ6: What are the most influential attributes for identifying the issues that will suffer from a prolonged delivery delay?

	Discussion
	Exploratory Data Analysis
	Backlog of Issues per Addressed Issue
	Practical Suggestions

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions

	Do Rapid Releases Reduce Delivery Delay?
	Introduction
	Methodology
	Subjects
	Data Collection

	Results
	RQ1: Are addressed issues delivered more quickly in rapid releases?
	RQ2: Why can traditional releases deliver addressed issues more quickly?
	RQ3: Did the change in the release strategy have an impact on the characteristics of delayed issues?

	Analysis of Potential Confounding Factors
	Practical Suggestions
	Threats to Validity
	Conclusions

	Why do Delivery Delays Occur?
	Introduction
	Methodology
	Subjects
	Data collection
	Research Approach
	Demographics

	Results
	RQ1: What are developers' perceptions as to why delivery delays occur?
	RQ2: What are the perceived impacts of rapid releases on delivery delays?
	RQ3: Do participants agree with our quantitative findings about delivery delay?

	Study Limitations
	Conclusions

	Related Work
	Conclusions
	Contributions and Findings
	Future Work

	Bibliography
	Appendix
	Firefox Survey
	ArgoUML Survey
	Eclipse Survey
	Methodology Web Page I
	Methodology Web Page II
	Invitation Letter
	Interview Script

